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Abstract. In this paper, the well known recursive Newton-Euler
inverse dynamics algorithm for serial manipulators is reformulated into
the context of the algebra of Dual Quaternions. Here we structure
the forward kinematic description with screws and line displacements
rather than the well established Denavit-Hartemberg parameters, thus
accounting better e�ciency, compactness and simpler dynamical models.
We also present here the closed solution for the dqRNEA, and to do
so we formalize some of the algebra for dual quaternion-vectors and
dual quaternion-matrices. With a closed formulation of the dqRNEA
we also create a dual quaternion based formulation for the computed
torque control, a feedback linearization method for controlling a serial
manipulator's torques in the joint space. Finally, a cost analysis of the
main Dual Quaternions operations and of the Newton-Euler inverse
dynamics algorithm as a whole is made and compared with other results
in the literature.

Keywords: Dual Quaternion; Newton Euler Inverse Dynamic Algorithm;
Robotic Manipulation

1 Introduction

Rigid body motion and control have been extensively studied in the past decades
in a number of disciplines, including, mechanical systems, robotic manipulation,
satellites, etc. These were usually investigated and designed by exploiting the
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Homogeneous Transformation Matrices (HTM), however, recently, many new
works have surfaced on the uses of dual quaternions (DQ) to describe such
systems [7, 11,12,14,27].

Particularly, regarding robotic manipulation, dual quaternion algebra proves
itself to be advantageous compared to other representations as it allows us
to represent the complete robot position and attitude�the pose�with a set
of eight parameters. Moreover, it was argued that the unit dual quaternion
(UDQ) in addition to being non-minimal and free of singularities, are also a
more compact, e�cient and less computationally demanding representation for
rigid-body displacements compared to HTM [13,19]. Indeed, we can also list as
further advantages of the dual quaternions the fact that they are very well suited
to represent many geometric primitives, such as lines and planes, in a simple
and intuitive way [26] and the fact that dual quaternions have been argued to
be most e�cient way to represent a screw motion [13]. The bene�ts of using
dual quaternion algebra have been discussed also in many works with di�erent
applications comprising rigid body motion stabilization, tracking, multiple body
coordination [14], kinematic control of manipulators with single and multiple
arms and human-robot interaction [8, 9, 26], etc.

Although a lot has been published regarding the kinematic representation
and control of robotic systems using dual quaternion algebra, there is still a
lot to be done with respect to representing and controlling the dynamics of a
robotic arm with DQ. Indeed, algorithms for rigid-body dynamics computation
play a crucial role for simulation of motion, analysis of forces, torques and for
the design of control techniques in robotics [17]. Rigid-body dynamics are at the
core of many recent robotic applications in di�erent �elds, such as legged robot
stabilization, forceful Human-Robot Interaction (HRI), computer animation and
even biomechanics.

In Dooley and McCarthy's work [7], the authors propose one of the
earliest formulations for the dynamic modeling for an unconstrained rigid
body and for a serial manipulator using dual quaternion algebra in Kane and
Levinson's formulation [16]. Although their work is pioneer, their equations
are overly complicate and lack a clear and intuitive physical meaning. Other
attempts to improve on [7] are presented in [14] in which it is proposed
a decoupled formulation for both the rotational and translational dynamics
using dual quaternions. Furthermore, they use this model in order to design
a regulator for both the attitude and position of a body. Neither of these works
exploit formulations for the dynamical problem that would couple together the
translational and rotational forces acting on the body. Furthermore, a coupled
formulation for the dynamic of an unconstrained rigid body can be found
in [11, 12] in which the authors exploit the manner in which dual quaternion
twists and wrenches can couple together the linear and angular variables.

We may further extend the dynamics of a rigid body to the dynamics of
a whole articulated robotic manipulator. In the literature, there are a few
algorithms that are usually used to describe such systems [15, 16, 18], with the
most famous ones being the recursive Newton-Euler algorithm (RNEA) and the
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Lagrange-Euler (LE) formulation. The LE equations and the RNEA are both
used to describe the relations between the joint torques, forces at the end e�ector
and kinematic variables, however, they di�er in many other aspects. Concerning
only computational complexity, the Newton�Euler formulation is considerably
more e�cient due to its inherently recursive formulation.

Regarding the dynamical representation of robotic manipulator in dual
quaternion algebra, the literature is more lacking�especially when considering
Newton-Euler's algorithm. Recent works on the subject include [28], in which
the authors exploit the principle of virtual work and UDQ to describe an e�cient
solution for the dynamics of a parallel manipulator. In [3,7] both authors show an
illustrative examples to how we can build the inverse dynamics of a manipulator,
with [3] using the principle of virtual work and dual numbers and [7] the dual
quaternion formulation and Kane's equations.

The only other works to focus on the dynamical description of a serial
manipulator through a dual quaternion based on the recursive Newton-Euler
algorithm have been published recently by [24,25] and [6]. In [24,25] the authors
propose a formulation for describing the dynamics of a spacecraft-mounted
robotic manipulator con�gured with di�erent joint types. Although the equations
in [24,25] have some similarities to the ones proposed in this manuscript and in
our work in [6] there are also many di�erences between the algorithms. In [24,25]
the authors propose framework, in which they take into account many di�erent
types of joints. However one big drawback in their formulation is that many
equations presented in [24, 25] are in the Euclidean vector-matrix formulation,
and therefore have to be mapped and back to dual quaternions, creating the
need for transformations in and out of the algebra, which leads to more costly
cumbersome and, although correct, unintuitive equations.

Opposed to [24,25], the work in [6] proposed a more intuitive solution for both
the recursive and closed formulation of the Newton-Euler algorithm following the
dual quaternion notation in the [26]. In its recursive formulation our dqRNEA
clearly presents a forward and a backward iteration, and the in the closed
formulation of the algorithm we identify the mass, Coriolis and gravity terms.
More so, in addition, we also contribute with an optimization of the adjoint
transformation allowing our algorithm to be more cost e�cient.

2 Mathematical Background

This section provides the reader background on many of the aspects pertaining
the algebra of dual quaternions as well as some of the algebraic proprieties and
operators required in the development of the algorithms presented in this work.
Finally, we will also introduce in this section the formalism for describing dual
quaternion based vectors and matrices.

2.1 Quaternion Algebra

Let ı̂, ̂, k̂ be the three quaternionic units such that ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1.
The algebra of quaternions is generated by the basis elements 1, ı̂, ̂, and k̂, which
yields the set
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H ,
{
η + µ : µ=µ1 ı̂+ µ2̂+ µ3k̂, η, µ1, µ2, µ3∈R

}
. (1)

A quaternion element q ∈ H may be decomposed into a real component
Re (q) , η and an imaginary component Im (q) , µ, such that q = Re (q) +
Im (q). For each quaternion element q, there is one correspondent quaternion
conjugate given by q∗ , Re (q) − Im (q), which in turn de�nes the quaternion
norm ‖q‖,

√
qq∗. The norm of quaternion elements coincides with the Euclidean

norm of a vector vec q , [η µ1 µ2 µ3]
T ∈ R4, that is, ‖q‖ = ‖vec q‖.

Quaternion elements with real component equal to zero belong to the set of
pure quaternions

H0 , {q0 : q0 ∈ H , Re (q0) = 0} (2)

whereby q∗0 = −q0. Such elements are isomorphic to three-dimensional vectors
and, similarly, they can be used to represent translation, angular and linear
velocities, accelerations, momentum and wrenches. Hence, kinematics and
dynamics can be compactly represented in a uni�ed framework. Within the linear
space of pure quaternions, we can de�ne the inner and cross product operations
similarly to their vectorial counterpart [26]. Given two pure quaternions a =

a1 ı̂+ a2̂+ a3k̂ and b = b1 ı̂+ b2̂+ b3k̂ we have the inner and cross products3

a · b , −ab+ ba
2

= a1b1 + a2b2 + a3b3, (3)

a× b , ab− ba
2

. (4)

In addition, a quaternion element can also represent arbitrary rotations when
constrained to the set of unit quaternions S3 , {q ∈ H : ‖q‖ = 1} . The set
S3 together with the multiplication operation forms the Lie group of unit
quaternions, Spin(3) [22]. An arbitrary rotation angle φ ∈ R around the rotation

axis n ∈ H0∩S3, with n = nx ı̂+ny ̂+nz k̂, is represented by the unit quaternion
r = cos(φ/2) + sin(φ/2)n [22, 26].

2.2 Dual Quaternions

Dual Quaternions are an extension of quaternions �rst introduced by Cli�ord to
describe the complete and coupled rigid body motion [22]. The dual quaternion
algebra is constituted by the set

H ,
{
q = qP + εqD | qP , qD∈H

}
, (5)

where ε is called dual unit with ε2 = 0, ε 6= 0.
A dual quaternion element can also be decomposed in primary and dual parts

P(q) = qP and D(q) = qD, respectively. And, for each dual quaternion element

q, there exist one correspondent conjugate q∗ , q∗P + εq∗D composed with the
quaternion conjugate of the primary and dual parts. Under multiplication, the

3 The operators (· , ×) can similarly be de�ned for H, see, e.g., [10,26].
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subset of unit dual quaternions S ,
{
q ∈ H :

∥∥q∥∥ = 1
}
, forms the Lie group

Spin(3) n R3, whose identity element is 1 and the group inverse of x ∈ S is
x∗ [22]. The subset of dual quaternions constituted by pure quaternions belong

to the set of pure dual quaternions H0 ,
{
q
0
= qP + εqD | qP , qD∈H0

}
where

q∗
0
= −q

0
. Similar to pure quaternions, elements in H0 can be deployed into

the kinematics and dynamics analysis to compactly express the coupled angular
and linear generalized rigid body twist, accelerations, momentum and wrenches.
Moreover, in a similar fashion, the cross product may also be de�ned for pure
dual quaternions

a× b , ab− ba
2

. (6)

Also, we can also de�ne the inner product for H0 by taking the combined real
value of the inner product from the primary part and dual parts, that is,

a� b , aP · bP + aD · bD, (7)

which is similar to the Euclidean norm of corresponding vectors and is similar
to the double-geodesic metric provided in Bullo and Murray [4] for SE(3).4

2.3 Dual Quaternions Matrices and Vectors

Although not very common in the literature, it is also interesting to de�ne how
the structure of dual quaternion vectors and dual quaternion matrices work, as
well as their main proprieties. Thus following the traditional vector formalism,
we may de�ne a dual quaternion vector as

Hn ,
{[
q
1
q
2
q
3
. . . q

n

]T
: q

i
∈ H, i ∈ {1, 2, . . . , n}

}
, (8)

which is endowed with the transpose and conjugate operations, that is, given the
dual quaternion vector Q =∈ Hn we may also de�ne its transpose and conjugate
as

QT ,
[
q
1
q
2
q
3
. . . q

n

]
, and Q∗ =

[
q∗
1
q∗
2
q∗
3
. . . q∗

n

]T
. (9)

Given two dual quaternions vectors such as Q =
[
q
1
q
2
q
3
. . . q

n

]
∈ Hn and

Q′ =
[
q′

1
q′

2
q′

3
. . . q′

n

]
∈ Hn the addition operation (Hn×Hn −→ Hn) can

be de�ned as

Q+Q′ ,
[
q
1
+ q′

1
q
2
+ q′

2
q
3
+ q′

3
. . . q

n
+ q′

n

]
, (10)

in which the individual elements of the vector are computed by the addition.
Similarly the multiplication, (Hn × (Hn)T −→ H), can be de�ned as

Q
(
Q′
)T

= q
1
q′

1
+ q

2
q′

2
+ q

3
q′

3
+ . . .+ q

n
q′
n
, (11)

4 It is important to highlight that there is no well-de�ned Riemannian metric for the
group Euclidean transformations nor for the (pure) dual quaternions, but the double-
geodesic approach used in [4] and herein ensures positiveness and equal actions in the
attitude and translation geodesics. The study on metrics for Euclidean displacements
and the correspondent topological obstruction lies out of the scope of the current
manuscript, but readers are refereed to excel works of [4, 20].
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In a similar fashion, we may de�ne the dual quaternion matrix as

Hn×m ,




q
1,1

q
1,2

. . . q
1,m

q
2,1

q
2,2
· · · q

2,m
...

...
. . .

...
q
n,1

q
n,2

. . . q
n,m

 : q
i,j
∈ H, i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}

 .

(12)
Note that addition and multiplication operate similarly to how they do in

the vector notation. Given the dual quaternion matrix Q ∈ Hn×m, we similarly
have the transpose and conjugate operations de�ned as

QT =


q
1,1

q
2,1

. . . q
n,1

q
1,2

q
2,2
· · · q

n,2
...

...
. . .

...
q
1,m

q
2,m

. . . q
n,m

 and Q∗ =


q∗
1,1

q∗
1,2

. . . q∗
1,m

q∗
2,1

q∗
2,2
· · · q∗

2,m
...

...
. . .

...
q∗
n,1

q∗
n,2

. . . q∗
n,m

 . (13)

Similar construction can be extended to pure quaternion and pure dual
quaternions. Taking the latter, for instance, we have

H0
n ,

{[
q
1
q
2
q
3
. . . q

n

]T
: q

i
∈ H0, i ∈ {1, 2, . . . , n}

}
, (14)

and the pure dual quaternion matrix H0
n×m de�ned in a similar fashion to (12)

Regarding the pure dual quaternion vectors we can also de�ne three very
important operations: the element-wise cross product, inner product and double
geodesic products. All this operations take advantage of their equivalents in H0

and perform these operations between every two pairs of pure dual quaternions
in the vector.

Let P 1 =
[
p
1,1
p
1,2

. . . p
1,n

]T
and P 2

[
p
2,1
p
2,2

. . . p
2,n

]T
∈ H0

n, then

such operations are de�ned as follows

P 1 ⊗ P 2 =
[
p
1,1
× p

2,1
p
1,2
× p

2,2
. . . p

1,n
× p

2,n

]T
. (15)

P 1 } P 2 =
[
p
1,1
· p

2,1
p
1,2
· p

2,2
. . . p

1,n
· p

2,n

]T
. (16)

P 1 � P 2 =
[
p
1,1
� p

2,1
p
1,2
� p

2,2
. . . p

1,n
� p

2,n

]T
. (17)

3 Novel Transformations: Addressing Commutativity

As an associative division algebra over R, the quaternion algebra is endowed
with classic operations such as addition, scalar multiplication, quaternion
multiplication�as it is dual quaternions algebra, although not being a division
ring. Nonetheless, it is also well-known that H is a non-commutative group, and
the same for the dual quaternion group�that is, if a and b are dual quaternions,
then ab 6= ba.
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To address possible constraints that may arise with its non-commutativity,
e.g., additional computational load in frame transformations�as shown in
the following section�a common strategy is to take the matrix algebra
representation, e.g., SU(2) which is isomorphic to Spin(3) can be commuted
with proper sign modi�cations. This approach, however, has a further drawback
which is the needlessly map from quaternion or dual quaternion to other Lie-
matrix manifolds.

For instance, in existing literature, in order to perform multiplicative
commutativity, the common strategy to take the matrix algebra representation
of quaternions or dual quaternions is done by using the orthogonal matrix which

is known as the Hamilton operator
±
H (x) ∈ R4×4 of the quaternion element

x [1]. In this manner, two quaternions a and b can commute as follows

y = ab = vec

(
+

H (a) vec b

)
= vec

(
−
H (b) veca

)
, (18)

where vec : H → R4 is the mapping from quaternion to R4 and vec is the
inverse mapping. The Hamilton operators for the right and left multiplications
can be computed from the matrix representation of orthogonal vectors from
x = η + ν1i+ ν2j + ν3k, that is,

+

H (x) ,


η −µ1 −µ2 −µ3

µ1 η −µ3 µ2

µ2 µ3 η −µ1

µ3 −µ2 µ1 η

 and
−
H (x) ,


η −µ1 −µ2 −µ3

µ1 η µ3 −µ2

µ2 −µ3 η µ1

µ3 µ2 −µ1 η

 . (19)

In order to address commutativity in a more intuitive and computationally
e�cient manner, it is important to devise new techniques to perform such
transformations within the algebra of (dual) quaternions. In particular, here
we de�ne two operators, which allow us to describe the linear transformations
(19) without the sequential mapping requirements: T4 and T8.

The operator T4 can perform such linear transformations with quaternions
without the need to map it to R4 and R4×4, that is, without leaving the
quaternion algebra. Given a vector of quaternions M =

[
m1 m2 m3 m4

]
,

with mi ∈ H, T4 de�nes the following transformation

T4 (M) q =m1q1 +m2q2 +m3q3 +m4q4 (20)

where q = q1 + q2 ı̂+ q3̂+ q4k̂ ∈ H. Similarly, for dual quaternions we have the
operator T8, yielding a transformation such as

T8 (N) q = n1q1 + n2q2 + n3q3 + n4q4 + n5q5 + n6q6 + n7q7 + n8q8 (21)

in which N is a vector of dual quaternions, ni ∈ H and q ∈ H.
Now, note that M and N can represent transformations as (20)-(21) in a

much more intuitive manner. Take, for instance, classic Hamiltonian matrix, it
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can be better represented by a quaternion vector

+

h (x) = [vecx vec (xı̂) vec (x̂) vec
(
xk̂
)
];

−
h (x) = [vecx vec (̂ıx) vec (̂x) vec

(
k̂x
)
].

(22)

From (19)-(20), we can rewrite the Hamiltonian in order to stay within the
algebra of (dual) quaternions. That is, the same commutative property can be
obtained as

y = vec(
+

H (a) vec b) =
+

h (a) b =ab0 + aı̂b1 + a̂b2 + ak̂b3,

= vec(
−
H (b) veca) =

−
h (b) a =ba0 + ı̂ba1 + ̂ba2 + k̂ba3,

(23)

where a = a1 + a2 ı̂ + a3̂ + a4k̂ ∈ H and b = b1 + b2 ı̂ + b3̂ + b4k̂ ∈ H. The
resulting operation has the advantage of being de�ned only over quaternion
multiplication by scalars whilst avoiding the tedious and costly operation of
mapping quaternions to R4 and R4×4, and back to H.

For dual quaternions, the same matrix algebra operator can be obtained
based on a R8×8 multiplication by the vector representation of a dual quaternion
element�and, then mapped back to H�as in [10,26]. In contrast, [2] introduces
the concept of orthogonal dual matrix combining the Hamilton operator matrix
for quaternions with dual unit ε with ε2 = 0, ε 6= 0. Herein, to commute
between dual quaternions we take a similar approach based on the direct product
of dual numbers with quaternion Hamilton operators (18)-(23), that is, the
multiplication between dual quaternions y = ab can be rewritten as

y =
+

h (a) b =
+

h(a)b+ ε(
+

h(a)b′ +
+

h(a′)b),

=
−
h (b)a =

−
h(b)a+ ε(

−
h(b)a′ +

−
h(b′)a),

(24)

where a = a+ εa′ and b = b+ εb′, and
+

h and
−
h yields a orthogonal dual matrix

as described in [2].

4 Unconstrained rigid body motion: kinematics and

dynamics

The advantages of using dual quaternion algebra for rigid body pose
representation and kinematics description are well justi�ed in the literature [13,
19, 23, 26]. In this section, we will exploit these advantages amid unconstrained
rigid bodies. The results herein will then built the basis for the modeling over
serial manipulators that follows.

The scope of operations with UDQs used for three dimensional motions are
particularly interesting when addressing representations of screws. The screw
axis is nothing but a tridimensional line in space, and thus can be represented
with a Plücker line through a set of three parameters: a unit direction vector
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(l), a point that passes through the line (p) and the line's moment m = p × l.
This set of parameters are denoted Plücker coordinates. A Plücker line can be
de�ned by the dual quaternion, l = l + εm, with m = p× l being the moment
around the origin and m,p,l∈ H0 being pure quaternions [19,26].

More so, when attached to a �xed point the line may rotate and perform a
motion with an arc-like trajectory. Much like with imaginary numbers, the dual
quaternions exponential is suited to represent a curve in space. Thus, as shown
in [26], for the dual quaternion q, the exponential can be de�ned as

exp(q) = P
(
exp(q)

)
+ εD

(
q
)
P
(
exp(q)

)
, (25)

with P
(
exp(q)

)
being de�ned ascos

∥∥P (q)∥∥+ sin‖P(q)‖
‖P(q)‖ P

(
q
)

if
∥∥P (q)∥∥ 6=0

1 o.w.
(26)

We highlight here the manner in which the exponential and Plucker line
relate to representing a screw axis displacement. That is, given the Plucker line
s = l + εm and the dual angle θ̂ = θ + εd, with θ, d ∈ R, we can represent the
screw axis' position as the UDQ x ∈ Spin(3)nR3, that is,

x = exp
(
θ̂
2s
)
= cos

(
θ̂
2

)
+ ssin

(
θ̂
2

)
. (27)

The above expression is a generalization which exploits the dual propriety to
couple the rotation of the screw (θ) and its translation (d). For brevity and to
simplify the proposed method description, we will only focus on revolute joints
manipulators�which in turn yields d = 0 and θ̂ = θ to the remainder of this
text. Note, nonetheless, that extension to prismatic joints should be trivial as
stressed in [19].

Furthermore, the unit dual quaternion described in (27) can also be rewritten
in terms of a quaternion pair as follows

x = r + ε(1/2)rpb. (28)

In this case, r ∈ Spin(3) denotes the body attitude w.r.t. a inertial frame,

whilst pb = px ı̂ + py ̂ + pz k̂ , is the rigid-body position expressed in the body
frame. The expression (28) is also useful to describe rigid displacements through
a rotation r followed by a translation pb.

We can then derive the �rst order kinematic equation to obtain the velocity,
ẋ (at the tangent space at x, as is done in [26]5

ẋ = 1
2xω

b, (29)

5 For further information on dual quaternion based kinematics please refer to [10,26],
whilst the readers are refereed to [12,27] for the dynamics�limited to unconstrained
rigid bodies.
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with ωb being the generalized twist in body frame with ωb = ωb + εvb, where
ωb ∈ H0 is the angular velocity and vb ∈ H0 is the linear velocity.

Although not much has been published on the formulation of the rigid
body dynamics with dual quaternion, there are some interesting results in
the literature. In the formulation �rst proposed by Dooley in [7], UDQs are
directly applied to solve the general dynamics problem of an unconstrained
rigid body (e.g., a holonomic �ying robot). However, as argued in [27] the
equations of motion are overly complicated, lack an intuitive meaning and are
hard to implement. In this context, the proposition in [27] then describes a
single rigid body dynamics from wrench/twist formulations, but instead of taking
full advantage of the UDQ representation, the operations are made element-
wise rather than an operation of a dual object. A more thorough solution is
presented in [12], and in this work, we take advantage of such a formulation.
To describe the system dynamics, the authors explicitly describe the angular
and linear momentums, as well as the resulting kinematic wrenches, stemming
from the body motion by introducing an augmented linear matrix representation
of the body mass and inertia tensor, the dual inertia matrix (a real 8 × 8
symmetric matrix). In other words, in [12], the body mass m ∈ R is described as
a diagonal matrix within a block diagonal matrix structure together the inertia
tensor of the body about its center of mass, that is, Ib ∈ R3×3, which in turn
relied on a manifold mapping from H0 ⊗ D to R8 and its inverse mapping. The
result proposed in [12] also required a complicated switch operator to properly
describe the resulting angular and linear momentums (and wrenches) in the dual
quaternion primary and dual parts.

In contrast, herein, we take advantage of the pure dual quaternion
representation for velocities and accelerations to derive a more direct description
of angular and linear momentums and wrenches. Since the linear part of the
generalized twist and body acceleration are described by a pure quaternion,
as seen in (29), the resulting momentum and force is obtained by a simple
scalar multiplication. Whilst the angular momentum and torque can be extracted
directly from the orthonormal vectors of the inertia tensor about its center of
mass w.r.t. the body axis multiplied by the angular velocities and accelerations.
The resulting dual quaternion momentum and wrenches stemming, respectively,
from body velocities and accelerations are therefore given by a Dual Quaternion

Inertia Transformation, G : H0 ⊗ D→ H0 ⊗ D, as

G(ωb) ,mD(ωb) + ε
(
Ibxωx + I

b
yωy + I

b
zωz

)
,

G(ω̇b) ,mD(ω̇b) + ε
(
Ibxω̇x + I

b
yω̇y + I

b
zω̇z

) (30)

where ωb and ω̇b are the body generalized twist and accelerations, w.r.t. center

of mass, with angular component being given by P(ωb) = ωx ı̂+ ωy ̂+ ωz k̂ and

P(ω̇b) = ω̇x ı̂+ ω̇y ̂+ ω̇z k̂. And, the inertia tensor of the rigid body characterized

by Ibx = Ixx ı̂+Ixy ̂+Ixz k̂, I
b
y = Ixy ı̂+Iyy ̂+Iyz k̂, and I

b
z = Ixz ı̂+Iyz ̂+Iyz k̂,w.r.t

to the coordinate axis of the center of mass�note they can be viewed as pure
quaternion representations of column vectors of the tensor matrix described in
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[12]. Finally, from (30), we can compute the rigid body dynamics as

G(ω̇b) + ωb ×G(ωb)− f b = 0, (31)

in which f
b
= fb + εmb is the body wrench (fb being the forces and mb the

moments applied about the body's center of mass).
Moreover, the dual inertia operator can also be extended as an operator over

(8), that is, given P =
[
p
1
p
2
. . . p

n

]T ∈ Hn0 , G : Hn0 −→ Hn0 yields

G(P ) =
[
G(p

1
) G(p

2
) . . . G(p

n
)
]T
. (32)

In which G(•) is the Dual Quaternion Inertia Transformation from (30).
The dual quaternion inertia transformation can also be de�ned for matrices

in a similar manner to what was done in (32). In this case our operator shall
be de�ned as G : Hn×m0 −→ Hn×m0 and we apply G(•) in every element of the
matrix.

Following the de�nitions in Subsection 2.3, we may also derive some
proprieties for the operator (32) w.r.t. the inertia transformation in

(32). Given the dual quaternion-vectors P 1 =
[
p
1,1
p
1,2

. . . p
1,n

]T
and

P 2

[
p
2,1
p
2,2

. . . p
2,n

]T
∈ Hn0 and the constant K ∈ Rn we have

1. G (P 1 + P 2) = G (P 1) +G (P 2) ;
2. G (P 1K) = G (P 1)K.

Both proprieties can be proved by inspection.
Finally, it is also useful to describe the congruence transformation that takes

velocities, accelerations and wrenches from one frame to the other, that is an
adjoint mapping [26]. Given the frame transformation x ∈ Spin(3)nR3 from F0

to F1, the adjoint operation that takes µ ∈ H0 ⊗ D from F0 to be expressed in
F1 yields

µ1 = Ad(x)µ = xµx∗, (33)

In [6] an alternative and more e�cient manner for representing the adjoint
transformations has been presented, in which (33) can be expressed in terms
of Hamilton operators as described in Section 3. Here, however, we present
yet another alternative for calculating this transformation, which will be used
throughout the remainder of this work. That is, we de�ne the operators AP and
AD.

AP(x)µ = APı̂
µ1 +AP̂

µ2 +APk̂
µ3. (34)

with APı̂
=(xP ı̂x

∗
P ), AP̂

=(xP ̂x
∗
P ) and APk̂

=
(
xP k̂x

∗
P

)
being the individual

base transformation. And

AD(x)µ = ADı̂
µ1 +AD̂

µ2 +ADk̂
µ3, (35)
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with ADı̂
= 2 Im (xP ı̂xD

∗), ADı̂
= 2 Im (xP ̂xD

∗) and ADı̂
=

2 Im
(
xP k̂xD

∗
)
. And, furthermore, we calculate the adjoint as

Ad(x)p = xpx∗ = AP(x)pP + ε (AP(x)pD +AD(x)pP ) . (36)

5 Inverse dynamics with unit dual quaternions

In this section, we propose a novel formalism for the recursive Newton-
Euler inverse dynamics algorithm that combines the advantages of screw
theory formalized over the dual quaternion algebra in an uni�ed framework
representation. As summarized in Algorithm 1, given known joint positions,
velocities and accelerations, we compute and propagate the pose, velocities and
accelerations of the links based on Newton's law of motion using the same
algebraic structure without the need of D-H parameters computations�similarly
to [19]. Then, we compute the wrenches (forces and moments) acting on each
link in a recursive fashion, starting from the wrenches applied to the end-e�ector.
Both forward and backward iteration are described herein with the same dual
quaternion framework exploiting the manifold capabilities to represent rigid
body pose, velocities, accelerations, momentum, and wrenches.

Algorithm 1 Dual-quaternion based recursive Newton-Euler Inverse Dynamics
for n DoF Manipulator

Initialization:

At the home con�g., set the frames F0 to the base, F1 to Fn to the n-links' center of
mass, and Fn+1 to the end-pose.
Set δii−1, ai as the pose of Fi−1 and the screw axis of joint i expressed in Fi, with null
vel. ω0=0 and gravity accel. ω̇0=−εg at base and end-pose wrench fEF=fEF+εmEF .

Forward iteration

xi−1
i (θi(t)) = δ

i
i−1exp

(
ai

∆θi
2

)
Compute AP (xi−1

i ) and AD(xi−1
i ) from (34) and (35)

ωi = aiθ̇i(t) +Ad(xi−1
i )ωi−1

ω̇i = aiθ̈i(t) +Ad(xi−1
i )ω̇i−1 + (ωi × ai) θ̇i(t)

Backward iteration

f
R,i

= ωi × (Gi (ωi)) +Gi (ω̇i)

f
i
= f

R,i
+Ad(xi+1

i )f
i+1

τi = f
i
� ai

5.1 Forward Pose, velocity and acceleration kinematics

The forward iteration of the algorithm, much like the well established FKM for
open chains, aims at obtaining the pose and velocity for each of the robot's links.
For the dynamic analysis, we also compute the twist's �rst derivative, that is,
the acceleration. All operations are performed using dual quaterion algebra.
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It is notable that Algorithm 1 exploits the screw theory formulation from
Section 4 for computing the FKM, rather than the more traditional alternative,
the Denavit Hartemberg (D-H) notation. In [19, 26], we see di�erent recursive
techniques being presented to solve the forward kinematics model (FKM) of
a serial manipulator based on dual quaternions. In particular, [19] makes a
compelling case for the screw theory alternative. As it is argued, this approach
based on line transformations is considerably more e�cient than the other
techniques such as the computation of the FKM based on D-H approach. More
so, the screw representation is much more intuitive and the position of the frames
can be chosen without the many restrictions that D-H parameters impose, for
instance, each link's frame of reference can be at the center of mass of the body,
which simpli�es the dynamical equations.

From dual-quaternion algebra, we can easily represent the end-e�ector pose
of an n-joint serial manipulator by means of successive rigid transformations
between its links, i.e., taking an initial joint con�guration, we can compute the
end-e�ector's pose by means of the relative displacements of each links from such
initial con�guration. Let us de�ne θh ∈ Rn as initial (home) joint con�guration.
At this con�guration, let δii−1 ∈ Spin(3) n R3 denote the con�guration of Fi−1
expressed in Fi, where F0 is the frame coinciding with the base. Frames F1 to
Fn should be at the center of mass of each link and Fn+1 is the reference frame
attached to the end-e�ector. We then represent the transformation from one
frame to another as δi−1i =

(
δ0i−1

)∗
δ0i and

(
δi−1i

)∗
=δii−1=

(
δ0i
)∗
δ0i−1.

Hence, the rigid transformation from base to end-e�ector is given by

δEF = δ01δ
1
2...δ

n
n+1. (37)

Taking the screw axis of the link at home position as the Plucker line si =
ω + εv, where ω and v are the pure quaternions of the angular and linear
velocity, respectively and, given a easily de�ned point p in the screw and we
have v = p×ω. This representation is in F0. To transform it to the link's frame
of reference, we apply a transformation ai = Ad

(
δi0
)
si from frame F0 to Fi.

Now, from the current joint position θi(t), the pose transformation of the
link i expressed in frame Fi−1 is given by

xi−1i (θi(t)) = δ
i
i−1exp

(
ai
∆θi
2

)
, (38)

with ∆θi = θi(t)− θh being the position deviation from the home con�guration.
Then, the end-pose can be calculated by

xEF = x0
1x

1
2...x

n
n+1. (39)

Considering the twist of a body de�ned as in (29), and that for serial chains
the twist of a particular link is the sum of the twist at previous links (propagated
from base to end-e�ector) added to the twist generated by the velocities of that
link's joint, we can write the twist equation of joint i as

ωi = ai∆θ̇i(t) +Ad(xi−1i )ωi−1, (40)
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where the adjoint transformation is required to properly propagate velocities to
the new frame of reference. Note similar strategy to this point has been proposed
in [19] showing considerable computational complexity costs improvements over
the use of D-H parameters. Herein, we extend such result taking individual links
and end-e�ector pose acceleration into account. Taking the derivative of (40),
we have

ω̇i =ai∆θ̈i(t) +
d

dt

(
xi−1i ωi−1x

i
i−1
)

=ai∆θ̈i(t) + x
i−1
i ω̇i−1x

i
i−1 + ẋ

i−1
i ωi−1x

i
i−1 + x

i−1
i ωi−1ẋ

i
i−1

(41)

whilst the the derivative of (38) give us

ẋii−1(θi(t)) =
1

2
xii−1ai∆θ̇i(t). (42)

Now, combining (41) and (42), we have

ω̇i=ai∆θ̈i(t)+Ad(x
i−1
i )ω̇i−1+

(
xi−1i ωi−1x

i
i−1ai−aixi−1i ωi−1x

i
i−1
)∆θ̇i(t)

2
,

(43)

which can further be simpli�ed by taking the cross product de�nition (4) as

ω̇i=ai∆θ̈i(t)+Ad(x
i−1
i )ω̇i−1+(xi−1i ωi−1x

i
i−1×ai)∆θ̇i(t)

From (40), we obtain a �nal expression for the recursive forward model for the
accelerations derived solely from screw theory based on dual quaternion algebra,

ω̇i = ai∆θ̈i(t) +Ad(xi−1i )ω̇i−1 + (ωi × ai)∆θ̇i(t). (44)

5.2 Backward Iteration

In the backwards iteration, given provided dual quaternion wrenches acting at
the end-e�ector and the resulting velocities and accelerations of the link's center
of mass from the forward kinematics, we can compute the required torques to
be applied at the joints to obtain the prescribed motion.

From individual rigid body dynamics stemming from each link's velocities
and accelerations (31), the resulting wrench acting on the link i can be computed
as

f
R,i

= ωi × (Gi (ωi)) +Gi(ω̇i), (45)

where Gi(∗) is the Dual Quaternion Inertia Transformation as in (30) for the ith
link. Now, as the resulting forces must be equal to the sum of the forces being
applied at attached joints, and given the serial kinematic chain propagation
between links, the resulting wrench f

R,i
is given

f
R,i

= f
i
+Ad

(
xi+1
i

)
f
i+1

. (46)
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By combining (45) and (46), we obtain the full dynamic equation of the required
dual quaternion wrench at link i,that is,

f
i
= ωi × (Gi (ωi)) +Gi(ω̇i)−Ad

(
xi+1
i

)
f
i+1

, (47)

which, thereafter, can be used to �nd the torque at the joint in the axis direction,

τi = f i � [D (ai) + εP (ai)] . (48)

Both the dual quaternion forward iteration and recursive propagation of the
wrenches required to compute the resulting joint torques are summarized in
Algorithm 1.

5.3 Closed form algorithm

To describe the inverse dynamics in a closed form, we exploit Algorithm 1 and
take advantage of the dual quaternion based matrices and vector formulation
from Section 2. We may de�ne the joint, torque, wrenches, twist vectors,
respectively as

θ =
[
θ1(t) θ2(t) . . . θn(t)

]T ∈ Rn, (49)

τ =
[
τ1 τ2 . . . τn

]T ∈ Rn, (50)

FR =
[
f
R,1

f
R,2

. . . f
R,n

]T
∈ Hn0 , (51)

F =
[
f
1
f
2
. . . f

n

]T ∈ Hn0 (52)

W =
[
ω1 ω2 . . . ωn

]T ∈ Hn0 (53)

and the derivatives of (49) and (53) as

θ̇
[
θ̇1(t) θ̇2(t) . . . θ̇n(t)

]T ∈ Rn, (54)

θ̈ =
[
θ̇1(t) θ̇2(t) . . . θ̇n(t)

]T ∈ Rn, (55)

Ẇ =
[
ω̇1 ω̇2 . . . ω̇n

]T ∈ Hn0 . (56)

From the quaternion-vector based formulation, we may group expressions in
Algorithm 1 together and rewrite the equations such as in Table 1, in which,
for an n-DoF robot the matrix A ∈ Hn×n and its counterpart As ∈ Hn×n are
de�ned as

A =


a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 0 an

 and AS =


D (a1) + εP (a1)
D (a2) + εP (a2)
D (a3) + εP (a3)

...
D (an) + εP (an)

 , (57)
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Equation

1 W = L
(
Aθ̇ +W

BASE

)
2 Ẇ = L

(
Aθ̈ +Cθ̈ + Ẇ

BASE

)
3 FR =W ⊗G (W ) +G

(
Ẇ

)
4 F = L∗ (FR + F

BASE
) .

5 τ = F �AS

Table 1: List of main operations in Dual Quaternionic-Matrix formulation

and the matrix C ∈ Hn×n as

C =


(ω1 × a1) 0 0 . . . 0

0 (ω2 × a2) 0 0 0
0 0 (ω3 × a3) 0 0
...

...
...

. . .
...

0 0 0 0 (ωn × an)

 , (58)

and the vectors WBASE ∈ Hn, ẆBASE ∈ Hn, FBASE ∈ Hn contain the
respective initialization values.

In addition to the elements presented above, we also have the variable L ∈
Hn×n. This stems from the adjoint term on the algorithm, that is, considering

Ad(x)p = xpx∗ (59)

we take advantage of the Hamilton operator to isolate the adjoint such as

AH(x)p =
+

h (x)
−
h (x∗)p. (60)

in which AH(x) will be a dual quaternion operator such that AH(x) =
+

h (x)
−
h (x∗). Furthermore, we may extend this operator to the matrix

formulation to build

Q =


0 0 0 . . . 0

AH(x
1
2) 0 0 . . . 0
AH(x

2
3) 0 . . . 0

...
...

...
. . .

...
0 0 0 AH(x

n−1
n ) 0

 . (61)

Moreover, from (61) we can de�ne Ltmp = In −Q in which In is the identity

n× n dual quaternion matrix and L−1 = Ltmp. We also notice that there exists

an inverse such that LtmpL
−1
tmp = In which is given by

L−1tmp =


1 0 0 . . . 0 0

AH(x
1
2) 1 0 . . . 0 0

AH(x
1
3) AH(x

2
3) 1 . . . 0 0

...
...

...
. . .

...
...

AH(x
1
n) AH(x

2
n) AH(x

3
n) . . . AH(x

n−1
n ) 1

 . (62)
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In order to obtain the closed form equation for the dqRNEA, such that,

τ =M(θ)θ̈ + c(θ, θ̇) + g(θ) + JT (θ)FEF, (63)

we take advantage of the expressions in Table 1. Starting with the torque, note
that

τ = F �AS = AS � F . (64)

as the double geodesic product is commutative, and because the operation
de�ned in (17) is done element-wise throughout the vectors, then it stands
that the vectors may commute as well. Furthermore, we substitute the fourth
expression in Table 1 in the right-hand side of (64), resulting in

τ = AS � [L∗FR] +AS � [L∗FEF] . (65)

Lastly we combine (65) with the remainder of the expressions resulting in

τ = AS � [L∗ (W ⊗G (W ))] +AS �
[
L∗G

(
Ẇ
)]

+AS � [L∗FEF] , (66)

τ =AS �
[
L∗
(
W ⊗G

(
LAθ̇ +LWBASE

))]
+AS �

[
L∗G

(
LAθ̈ +LCθ̇ +LẆBASE

)]
+AS � [L∗FEF] . (67)

Here we use the proprieties linked to (32) in order to break down the terms in
G(•). Thus

τ =AS �
[
L∗W ⊗

(
G (LA) θ̇

)]
+AS � [L∗W ⊗G (LWBASE)]

+AS � [L∗G (LA)] θ̈ +AS � [L∗G (LC)] θ̇

+AS �
[
L∗G

(
LẆBASE

)]
+ [AS �L∗]FEF. (68)

The expression obtained in (68) is the closed form version of the dqRNEA,
however, to obtain a more intuitive representation as in (63), we take

M(θ) = AS � [L∗G (LA)] ; (69)

c(θ, θ̇) = AS �
[
L∗W ⊗

(
G (LA) θ̇

)]
+AS � [L∗W ⊗G (LWBASE)]

+AS � [L∗G (LC)] θ̇; (70)

g(θ) = AS �
[
L∗G

(
LẆBASE

)]
; (71)

JT (θ) = AS �L∗. (72)

We add here that our formulation for the dqRNEA is one attempt to close
a gap in the literature, both with the recursive formulation and the closed one.
Indeed, there not many works tackling the use of dual quaternions for describing
the RNEA for serial manipulators (or any manipulator for that matter). One
exception however are the recent works in [24,25], which describe the quaternion-
based inverse dynamics of a spacecraft-mounted robotic manipulator con�gured
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with di�erent joint types. We reiterate here, however, that although some of the
equations in [24, 25] are similar to our own, their approach is vastly di�erent.
While they propose a framework for all types of joint, their approach has many
equations presented the Euclidean vector-matrix formulation. This is solution,
although valid, is more costly and many times also unintuitive and cumbersome,
as there is the need for mapping the dual quaternions to real vectors and
matrices.

The expressions presented in (63) is similar to the general formulation
presented in existing results in the literature for closed-form inverse dynamics.
Notwithstanding, the results derived herein are all expressed in unit-dual
quaternions and its corresponding tangent-space. Such approach should facilitate
the direct usage of inverse dynamics within applications derived within dual
quaternion algebra.

5.4 DQ Based Inverse Dynamics Controller

Following the modelling results presented in this Section, this paper
proposes a dual-quaternion based computed torque controller (CTC). Although
conceptually simple and well known, this MIMO controller based on feedback
linearization is ideal to illustrate the validity of the approach and the usage of the
dqRNEA in practical applications. In the following, we present, as a contribution,
the formulation for a PD computed torque controller based on (63) to (72).6

To design our controller we take (63) as a starting point. The intuition for this
controller is to �nd a feedback law τinput = f(θ, θ̇, θ̈) such that the nonlinearities
stemming from the inverse dynamics model are removed yielding a simpler linear
system. To this aim, let us choose a control law such

τinput =M(θ)ac + c(θ, θ̇) + g(θ) + J
T (θ)FEF, (73)

in which ac is an input we are still to choose. Furthermore, asM(θ) is invertible,
then we may combine (63) and (73) to obtain

θ̈ = ac. (74)

The system in (74) is a double integrator and it stands out as a linear and
decoupled system, enabling us to use each individual element of ac to control
each output.

We now design the input ac with a control law of our choice, in this case a PD
controller scheme to drive the input as a function of the position and velocity,

ac = −KPθ −KDθ̇ + r(t) (75)

with KP and KD being respectively the proportional and derivative gains and
r(t) is the desired feed-forward trajectory, which we may de�ne as

r(t) = θ̈desired +KPθdesired +KDθ̇desired. (76)

6 Although in this work, we are only presenting the basic formulation for the CTC, we
highlight there is a great variety of torque control based approaches that can better
account for uncertainties in the models being used [17].
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Substituting (76) in (75) we have

ac =KP (θdesired − θ) +KD

(
θ̇desired − θ̇

)
+ θ̈desired, (77)

in which we may de�ne (θdesired − θ) = e and
(
θ̇desired − θ̇

)
= ė as the error

functions, thus creating our control law,

ac =KPe+KDė+ θ̈desired. (78)

6 Computational Complexity Cost Analysis

This section aims at scrutinizing the computational costs involved in our
algorithm and to compare it with basic results in RNEA literature. The
methodology to assess such costs are similar to the ones in [13, 19, 21, 23,
26]. Particularly, [19] and [23] advocates over the performance of the UDQ
(8f, 48×, 40+) over the HTM representation (12f, 64×, 48+), where f,×,+
stands for the storage, scalar addition and multiplications costs related to a single
group operation�which in turn relates to a single rigid-body transformation [19].
Here, as in our previous work [6], we add as a contribution the analysis of
individual costs for operations with dual quaternions, as well as the costs for
our dqRNEA algorithm.

The computational cost is computed in terms of the number of elementary
operations (multiplications/division and addition/subtraction of �oating units),
and of storage [21]. Thus, the computational cost for an operation or for an
equation will be given by

costTotal(Operation) = ([storage] f, [no Mult.]×, [no Add.] +) . (79)

Table 2 lists the costs related to quaternion algebra, whilst Table 3 shows a
detailed list of dual quaternion operations with respective storage and costs. Note
that, although we reckon the same computational complexity could be directly
extracted from basic operations, to explicitly state the compound operations
is valid for future reference and computational cost analysis within the dual
quaternion algebra.

From Tables 2 and 3, we can compute the total cost for all operations of the
proposed algorithm for a n-joints serial manipulator. Such results are shown in
Table 4.

7 Quantitative Analysis

In this section, we present a simple example to validate the proposed algorithm
implementation yet, most importantly, we provide a quantitative analysis of the
proposed algorithm given di�erent conditions and compare with the HTM based
solution.

First, to illustrate the framework, we take a simple scenario, i.e., a two-link
robot arm with similar links with length of 1.0 m, weight of 1 kg and centre
of mass given in the link's centroid. Fig. 1 compares the result with di�erent
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Table 2: Cost requirements of quaternion algebra operations
Operation Storage ×/÷ +/−
Addition (x1 + x2) 8f 0× 4+
Multiplication by Scalar (αx) 5f 4× 0+
Quat. Multiplication x1x2 8f 16× 12+
Quat. Cross Product (4) 6f 9× 5+
Quat. Inner Product (3) 6f 3× 2+
Matrix Linear Transf. T4 (20) 20f 16× 12+

Quat. Hamilton Operator
+

h (•) or
−
h (•) (23) 8f 16× 12+

Quat. Adjoint Transformation 7f 20× 28+

* where α ∈ R and x1,x2 ∈ H

Table 3: Cost requirements for dual quaternion operations
Operation Storage ×/÷ +/−
Addition (x1 + x2) 16f 0× 8+
Multiplication by Scalar (αx1) 9f 8× 0+
Dual Quat. Multiplication (x1x2) 16f 48× 40+
Cross Product (6) 12f 18× 12+
Inner Product 12f 6× 5+
Double Geodesic Product (7) 12f 6× 5+
Dual Quat Linear Transformation 72f 64× 56+
Dual Quat. Hamilton Operator (24) 28f 48× 48+
Adjoint Construction of AP and AD 12f 108× 72+
Adjoint computation from (36) 30f 27× 30+
* where α ∈ R and x1,x2 ∈ H

versions of the proposed algorithm and with the HTM based RNEA using a
third party software (Peter Corke's Robotics Toolbox, [5]). All computations
were performed using the DQ Robotics toolbox7.
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Fig. 1: Torque plot for each of the joints in di�erent versions of the algorithm, that
is, matrix-quaternion formulation (solid lines), closed equation (dash-dotted)
and recursive algorithm (dotted) compared to a third-party HTM-based RNEA
(dashed).

7 http://dqrobotics.sourceforge.net
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Table 4: Cost of dqRNEA algorithm operations for UDQ

Oper.
DQ - PoE DQ - DH

Storage(f) ×/÷ +/− Storage(f) ×/÷ +/−
Eq. (39) 8n 48n 40n 24n 144n 120n

Eqs. (34, 35) 12n 108n 72n 12n 108n 72n

Eq. (40) 37n 33n 36n 37n 33n 36n

Eq. (44) 44n 57n 54n 44n 57n 54n

Eq. (45) 22n 42n 30n 22n 42n 30n

Eq. (46) 36n 27n 36n 36n 27n 36n

Eq. (48) 12n 6n 5n 12n 6n 5n

TOTAL 171n 321n 273n 187n 417n 353n

Furthermore, to further validate the results we also implemented the
proposed computed toque controller to analyze the stability and convergence
of the closed-loop system. Some results for the controller can be seen in Figs. 2
and 3.

(a) θ0 = {0, 0} , θend =
{
0, π

2

}
. (b) θ0 = {0, 0} , θend = {0, π}

(c) θ0 = {0, 0} , θend =
{
π, π

2

}
(d) θ0 = {0, 0} , θend =

{
π, π

2

}
Fig. 2: Robot plot at di�erent con�gurations. Here we merged the images for the
plot at the initial joint con�guration θ0 and the �nal joint con�guration θend.

To quantitatively assess the computational complexity performance of the
proposed algorithm, we devised and computed the cost for di�erent scenarios
in terms of degrees of freedom (DoFs). Fig. 4 shows the respective costs results
concerning solely the FKM transformation. As stressed in in [26], [19], the dual
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Fig. 3: Error convergene for the experiments in Fig. 2

quaternion based solution performs better than HTM and PoE formulation has
an advantage over the DH parameters. This is particularly more relevant for
larger DoFs.
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Fig. 4: Costs for FKM computation using: HTM (blue) and UDQ (red) with D-H
representation (dotted) or screw theory (solid) for n ranging from 1-42.

Fig. 5 shows the cost comparison between the dqRNEA with PoE and the new
proposed adjoint in comparison to the HTM recursive Newton-Euler8. We notice
that for all three variables we have measured the dual quaternion representation
performs signi�cantly better. This is a relevant result as the computational
e�ciency of the proposed algorithm is one of questions we aimed to answer
in this work. Yet, such result is not su�cient to claim the superiorty of the

8 This algorithm can be found on chapter 8 of [17].
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algorithm over other versions of RNEA which exist in the literature, as many
works have been focused solely in optimizing the performance of RNEA as herein
we have not aimed to perform any optimization in none of the HTM or DQ based
results.

It is worth to mention that we compared our result with classic HTM based
RNEA as both UDQ and HTM are singularity free representations and for having
the translation and rotation coupled together in only one structure, which by
itself is one great advantage for applications in path planning and control.
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Fig. 5: Total costs for RNEA of both HTM and DQ. In the plots, the HTM is
represented in blue and the DQ is represented in Red. Also n ranges from 1-42.

8 Conclusion

The main focus of this paper was to provide a novel and cost e�ective
formalization for the RNEA with dual quaternion algebra and thus extend
results found in the literature of robotic manipulators. Thus, we have also
addressed some of the issues regarding the development of the dqRNEA, analysis
in terms of computational complexity, development of a closed form controller
and further implementation of a computed torque controller. Furthermore, to
achieve improved performance, we have opted for a less traditional method of
describing a serial manipulator. In order to avoid the extra costs of the D-H
parameters and in order to design simpler dynamical equations, we have chosen
to base our formulation on screw theory. Moreover, we have also contributed
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to the literature by de�ning a alternative methods for describing the adjoint
transformation, linear transformation and to address commutativity, all within
the algebra of dual quaternions. The resulting algorithm, in addition to provide
suitable results within the algebra of dual quaternions, has also shown improved
performance over the classic HTM solution. For future works we want to extend
our algorithm to cooperative manipulation taking advantage of the cooperative
kinematic description within DQ algebra with the e�cient computation of the
manipulator dynamics based on screw theory with UDQ.
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