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Abstract. This paper describes a framework for precise self-localization
using 2D radar scan matching based on a digitalized map. For this pur-
pose, radars, odometers, a gyroscope and a global digital map are com-
bined. Basically estimated ego-motion using motion sensors is improved
using a novel scan matching approach in order to attain globally cor-
rected self-localization results. The matching process is based on map
information, iterative optimization using the Gauß-Helmert-Model and
two novel weighting methods to register the environment map using radar
information. This approach focuses on self-localization in a global frame
without using Global Navigation Satellite Systems (GNSS).
Beside our main innovation of using native non-discretized map lines for
matching we also apply two novel weighting methods to cope with noisy
radar scans for matching problem. By applying the Gauß-Helmert-Model
we also consider the individual measurement uncertainties to make the
approach even more robust against noisy data. Using map lines and data
points categorizes our approach in the point-to-feature scan matching
family. The performance and usability of the proposed approach is eval-
uated in real-world experiments and compared qualitatively and quanti-
tatively to the state of the art matching methods.
The results illustrate an improvement in precision and computational
demand compared to other point cloud based matching methods.
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1 Introduction

Accurate ego-motion estimation is a fundamental challenge and one of the most
important requirements for mobile robot applications and autonomous driving
systems. For obstacle detection and avoidance as well as for mapping and motion
tracking systems a mobile robot or a vehicle must retain its own pose (position
and azimuth). The ego-motion is basically retrieved in this approach by mechan-
ical motion sensors using a gyro and four wheel-based odometers (dead reckon-
ing), included as standard features in our test vehicle. However, the calculated
ego-trajectory using these sensors is not accurate enough for autonomous vehicle
applications.
Inertial sensors are highly affected by drift and wheel-based encoders are not
accurate enough due to wheel slippage and imperfection of motion models. This
leads to a large error, which accumulates over time. One of the strategies to
mitigate this inaccuracy is scan matching, which is used in this approach to im-
prove the ego-motion estimated basically by dead reckoning. In scan matching
the pose of a sensor observation is investigated by seeking its best overlap with a
reference. If this reference is another sensor scan assuming a known initial pose,
a local scan matching is performed [18] and it can be an alternative to dead
reckoning for retrieving the ego-motion. However, in our approach the estimated
ego-motion by dead reckoning is improved by searching for an alignment between
radar measurements and a digital map. Since we assume a roughly known initial
pose it results also in a local scan matching in a global coordinate frame [27].
The first step and the most computationally expensive part of matching is to
find the correspondences between data and model. Compared to other matching
methods it is considerably less complex in calculation in this approach, since
our model (digital map) consists of lines and for each radar detection its nearest
map line is its correspondent feature. Afterwards a filtering method is applied
to reduce the effect of objects, which do not reflect static or realistic land-
marks according to the map information (e.g. objects behind nontransparent
map objects). Finally, Euclidean distance between data and their correspondent
model features are minimized iteratively by applying the Gauß-Helmert-model
(GHM), which considers the known data covariances and makes the solution
robust against noisy data.
Additionally, two novel weighting criteria can be used to weight detections
higher, which are more probable to be non-noisy data. It makes the approach
even more robust against uncertainties. Both weighting methods can be applied
separately or in combination and integrated in the GHM. Fig. 1 shows the result
of a test drive in a parking lot with and without applying scan matching. The
ego-trajectory (blue) using dead reckoning in Fig. 1.a is biased, which leads to
generation of an inconsistent occupancy grid map (OGM). After applying the
proposed scan matching a more accurate result is achieved in Fig. 1.b with a
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Fig. 1: The ego-pose estimation of a test vehicle by dead reckoning (a) and the
improved ego-motion estimation by scan matching (b) in blue. Based on these
trajectories an occupancy grid map is generated. The letters S and E show the
start and end point, respectively. Photo: Imagery c©2018 Google, Map data c©2018
GeoBasis-DE/BKG ( c©2009).

consistent OGM, which overlaps completely with the environment representa-
tion. For the proposed method in this paper two European patent applications
with the numbers EP 18153440.5 and EP 18153439.7 are already filed. This is
an extended version of the article Radar Scan Matching Using Navigation Maps
published in proceedings of IRC 2019 [23]. This paper is organized as follows.
Section 2 reviews related works. Section 3 presents digital map data processing.
Section 4 describes the scan matching algorithm in detail. Section 5 demonstrates
experimental results, which are evaluated qualitatively and quantitatively to val-
idate our approach. Finally, Section 6 concludes this paper and discusses future
work.

2 Related work

Retrieving the ego-motion is widely proposed using different sensors such as
GNSS. Some of these systems can achieve an acceptable accuracy level (within
centimeters) in open sky. However, due to the limited access to satellite signals
GNSS networks are not usable in some areas such as tunnels or undergrounds or
where very strong multi-path propagation occurs e.g. areas surrounded by tall
glass covered buildings. Dead reckoning is one of the alternatives in such areas,
its operation is prone to be affected by systematic and non-systematic errors.
In [4] some methods are introduced to cope with systematic errors. However,



58 A. Pishehvari et al.

mechanical motion sensors are often affected by non-systematic errors such as
noise causing a significant degradation of self-localization quality.
Using vision sensors [15] or remote sensing systems such as LiDAR (light detec-
tion and ranging) [9] and radar (radio detection and ranging) various techniques
can also be applied for tracking the ego-pose. Scan matching is one of the widely
used algorithms, which can be employed in different ways to retrieve the vehi-
cle’s ego-state or to improve it by estimating only its displacement. A possible
approach for ego-pose retrieving is to match two successive sensor observations.
In [20] visual odometry is used to reconstruct the ego-pose by analyzing the
changes that motion induces on the consecutive image features. However, the
weather- and light-conditioned performance of vision-based systems limits their
usage for environment sensing.
Using remote sensors, the matching methods can also be applied for the reg-
istration problem of two consecutive observations, which can be categorized in
optimization-based and probabilistic methods. Correlative scan matching is an
example of probabilistic algorithms, which maximizes the probability of hav-
ing observed the data given the last one and is applied in [22] for laser scan
matching. Iterative closest point (ICP) [2], Hough transformation [7], Fourier-
Mellin transform [8], histograms [5] and normal distribution transform (NDT)
[3] are possible algorithms for optimization-based matching. ICP algorithm and
its variants such as point-to-line ICP (PLICP) [6], MbICP (metric based ICP)
and IDC (iterative dual correspondences) belong to the most pervasively applied
techniques for scan matching. MbICP and IDC are used in [19] and [18], respec-
tively, for retrieving the ego-pose using laser scanner. The motivation of using
radars is –in contrast to LiDAR– their resilience to adverse weather conditions
in outdoor areas. However, radars tend to be more affected by noise and multiple
reflections and because of their sparse measurements the matching of consecu-
tive scans is less researched. Instead, radar observations can be compared with
a predefined map to improve the ego-pose estimated basically by other sensors
e.g. dead reckoning. The environment map can be a probabilistic map gener-
ated based on sensor data (vision, laser or their combination) [17] or it can be
a navigation map such as Google map or OpenStreetMap (OSM) [12]. Using
sensor-based environment model results in big volumes of data to be stored and
processed and demands much more time and effort than using a navigation map.
Environment models are employed widely in literature for localization problem
e.g. OSM is used in [25] in combination with LiDAR data for self-localization.
SLAM (Simultaneous localization and mapping) is another approach for retriev-
ing the ego-position while constructing a map of the environment [26] without
using a priori map. It requires landmark extraction for loop closure which makes
the SLAM computationally more complicated in comparison with scan match-
ing. In addition, the feature extraction is inaccurate in the case of using radars.
There are also SLAM variants with a fast performance but still the simplicity
and low computational cost of the proposed scan matching is a major advan-
tage.
Motivated by the mentioned works, we propose a simple real-time matching
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technique with low computation time using an efficient environment map and
compare it with some of the state of the art algorithms. The next section de-
scribes how the navigation map can be used for matching problem.

3 Map representation

In order to refine the ego-position, which is basically estimated by dead reckoning
the required environmental information is obtained from an a priori map. It can
be any kind of 2D/3D map in a local or a global coordinate frame with desired
geometric representation complexity. However, the use of 2D environment maps
for matching is computationally more efficient. The free OSM is one of the
possibilities for using navigation maps. A segment of such map is shown in Fig. 2.
To attain a global ego-pose tracking OSM is used in this approach. For map-
matching solely the landmarks such as buildings, roadsides, etc. are required.
These are shown in Fig. 2 as purple lines, which are described mathematically
as native discrete line segments for the matching problem.

4 Scan matching process

Scan matching is the process of calculating a rigid body transformation of a
sensor measurement to maximize its overlap with a reference e.g. a naviga-
tion map. This conversion consists of a longitudinal (tx), lateral (ty) and ro-
tational transformation (φ), which can be represented by a displacement vector
d = (tx, ty, φ)T ∈ R3×1. The first and most computationally intensive step of
a matching algorithm is to find correspondences between data and model. The
displacement of radar measurements relative to the map cannot be large, since
the time between receiving two successive scans is in millisecond range and the
matching process is performed continuously. Based on this assumption the cor-
respondent map line segment for each detection is expected to be its nearest
line in the map. In this manner the scan matcher does not need to perform the

Fig. 2: An example for environment representation. (Data from OpenStreetMap).
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computationally expensive feature extraction, which can be also inaccurate ac-
cording to the high noise level of radar measurements. To make the approach
robust against noisy data the radar detections are filtered according to the dis-
tance from their correspondent map lines. A weighting criterion is then used to
reduce the influence of false detections, which makes the approach even more
robust against noisy radar data.
Fig. 3 illustrates the iterative algorithm for ego-pose estimation using radar scan
matching containing the entire process. The matcher iterates until the modifica-
tion of displacement vector (∆d) is less than a threshold ε. The position (x, y) and

orientation (θ) of the vehicle are described by a state triple p
vehicle

= (x, y, θ)
T

.
A state increment between radar scan and map is calculated by the matcher,
which reduces the scan displacement. The result of matching is a rigid body
transformation, which corrects the inaccurate ego-pose estimated by dead reck-
oning.

Fig. 3: Algorithm of Ego-pose estimation applying proposed scan matching.

In Fig. 4 the blue points are the detections of a single radar scan rendered from
ego-pose estimated by dead reckoning. The position and the orientation of the
ego vehicle are shown as a black rectangle and a red arrow, respectively. In
Fig. 4.b a slight displacement of this scan relative to the map can be identified.
Scan matcher seeks the best possible transformation that minimizes iteratively
the displacement. It improves the ego-motion estimation, which is illustrated in
Fig. 4.c.
In the following section the filtering and weighting of the radar detections are
described.
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Fig. 4: Ego-pose improvement using scan matching. The radar detections (blue)
rendered from ego-pose estimated by dead reckoning (a) can be compared with
the map (b). The ego-pose is corrected applying scan matching (c).

4.1 Filtering of radar detections

Optimization-based matching is sensitive to noise, occlusion and spurious data
(outliers), such as multiple reflections or false detections. An essential part of
scan matching is to reject this noisy data to reduce their effect on the result. By
a priori map information we can filter non-static objects which are far away from
available landmarks or those behind nontransparent map objects. In this section
two filtering methods are introduced which use the environment map and the
data association between map and sensor observations as input.

Thresholding-based filtering

Applying hard thresholding the perpendicular distance of the observation form
their corresponding map line is considered. If this distance d⊥ exceeds a thresh-
old Sth the observation is filtered. To avoid the need for a highly accurate initial
pose estimation this threshold has to be selected initially wider and it can be re-
duced over time after initialization. The large displacement during initialization
is allowed because of the iterative solution of the GHM. The correspondences
have to be re-identified after each iteration. Due to the continuously matching
in millisecond range the ego-trajectory cannot have a large drift. Based on this
assumption the ego-pose has always a small displacement and the radar mea-
surements can be filtered in this way.
For scan matching we assume a known initial pose which can be estimated by
global localization algorithms such as particle filtering or by using GPS, etc.
However, if the initial pose estimation deviates significantly from the ground
truth, a hard thresholding could result in filtering of non-noisy data. This fil-
tering method demands very low computation time but if the initial pose error
exceeds certain limits the scan matcher is not able to converge to the correct
pose. In such a case there is no chance to recover the correct pose because the
assumption is a small pose estimation error due to the continuous map match-
ing.
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Another worst-case scenario happens if during a long period of time there are
no observations to be matched with the map. This can occur if the observation
contains static detections which are not corresponding to the map e.g parked
vehicles. Missing objects in the map lead also to a failed correspondences iden-
tification. In this case the accumulation of pose estimation error caused by dead
reckoning can result in a large distance between observations and their corre-
sponding map features (lines). Applying a hard thresholding could lead also in
this case to the filtering of useful sensor information and in worst case to los-
ing the ego-pose in the map frame. It is therefore recommended to use robust
estimators for filtering which is described in the following.

Robust estimation

Using the thresholding-based filtering is due to its computational simplicity
advantageous. However, this method is critical regarding to its robustness
against the inaccurate pose estimation. Since OSM consists solely of lines, a
line fitting algorithm can be used for filtering such as least-squares estimator,
RANSAC3 [10] or MSAC2 [28]. In each sample time a 2D set of sensor mea-

surements P =
(
p
1
p
2
. . . p

m

)T ∈ Rm×2 and a map consisting of n lines
Lr, r = 1, 2, . . . , n are available. For filtering based on line fitting each time
only the sensor observations which are correspondent with a single map line
Lr are considered, so that n models have to be estimated for the entire sensor
observation. The problem of line fitting is to find a line which minimizes the
sum of perpendicular distances which are referred to as orthogonal regressions.
Least-squares estimator is one option to solve this problem. However, if the non-
modeled noise has a high proportion this estimator does not perform robustly
since this algorithm is not able to classify the noisy data. Robust estimators use
only a portion of data which are called inlier and entail the close points to the
model response. To classify the data as inlier and outlier it is assumed that the
information about process noise scale is available.
The idea of RANSAC is to select two random samples and define a line equation

n p
j
− b = 0, pj ∈ P (1)

where n is the unit normal vector of the corresponding map line and b is the
perpendicular distance of the line from the origin. Based on this equation the
model

M =
[
nx ny b

]
(2)

can be defined. The set of sensor measurement which corresponds with the line
Lr is described as P with

P = {pj 7→ Lr, 1 ≤ j ≤ m}. (3)

3 RANdom SAmple Consensus
2 M-estimator SAmple and Consensus
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Fig. 5: Comparison of loss function for different model fitting algorithms.

RANSAC selects two points randomly from the samples in P and estimates a
model Mr, n = 1, . . . , n. Then the samples have to be classified to inliers and
outliers based on a pre-defined threshold C base on process noise. The model with
the highest number of inliers is finally selected as the most probable hypothesis.
Then it solves the model fitting problem as an optimization problem defined by

M̂ = argmin
M

{ ∑
P∈P

eM (P,M)
}

(4)

where M is the model (map). The parameter eM defines the error which is the
perpendicular distance between an observation and the estimated line by line
fitting, i.e.

eM = np− b. (5)

The loss function of RANSAC is defined the by

Loss (P,M) =

{
0 |em| < σ
C otherwise

(6)

associated with the measurement P regarding to the defined model. As it can be
considered in the loss function all inliers are handled equally independent form
their error eM . A robust M-estimator with the loss function

Loss (P,M) =

{
e2m |em| < C
C2 otherwise

(7)

includes also all inliers but weights them according to their error regarding to
the estimated model in contrast to RANSAC. Figure 5 shows the difference of
loss functions for the discussed model fitting approaches and their behavior to
cope with outliers. The following algorithm is used in this work for filtering
by robust estimation methods. As termination criterion a maximum number



64 A. Pishehvari et al.

Fig. 6: Four different methods used for filtering of one sensor observation. Green
singles are the unfiltered data and red dots shows the result of filtering. Black
solid lines represent the OSM lines.

of iterations can be used. In Fig. 6 the results of applying hard thresholding
and robust estimation for a single radar observation are illustrated. As it can
be observed in this figure if the pose deviates considerably from its true value
then the overlap between the map and the observation reduces strongly. As
shown in Fig. 6.b the hard-thresholding method filters a considerable amount of
non-noisy information. The robust estimators in 6.c and 6.d have significantly
better performance since they use the inlier/outlier classification. In this case
both robust estimators output the same result. In contrast, the least-squares
estimator in Fig. 6 is using the entire data making it not robust enough to cope
with highly noisy data.

4.2 Scan matcher

The main objective of the scan matcher is to use correspondences between radar
detections and map line segments to find a transformation. It minimizes the
total 2D squared distances between detections and their correspondent lines. The
distance between a data point p

i
, i = 1, . . . ,m and a map line Lj , j = 1, . . . , n

can be described as

δi = nj .pi − bj , (8)

where nj is the unit normal vector of the corresponding map line and bj is the
perpendicular distance of the line from the origin. A 2D rotation matrix R and
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2D translation vector t expressed by

R (φ) =

(
cos (φ) − sin (φ)
sin (φ) cos (φ)

)
, t =

(
tx
ty

)
(9)

shall be estimated to minimize the mentioned distances δi. The functional rela-
tionship

F (P , d) =

m∑
i=1

[
nTi

(
Rp

i
+ t
)
− bi

]2
(10)

has to be minimized to find the optimum solution for the matching problem,
which contains the total squared Euclidean distances of data points and map
lines. Considering the assumption of small displacement of radar scans with
regard to environment model the nonlinear rotation matrix can be approximated
by the first order term in φ resulting

sin (φ) = φ, cos (φ) = 1⇒ R (φ) =

(
1 −φ
φ 1

)
. (11)

A Cartesian coordinate system is used for the map and radar measurement rep-
resentation. As the range and azimuth of radar detections contain known, range
dependent uncertainties we aim to solve a weighted least squares problem to ob-
tain d. The used radars are more precise in the range measurement r than in the
azimuth φ resulting in a long narrow ellipse in polar coordinates, transverse to
the target line of sight. Taking the uncertainties into account the matching prob-
lem can be solved using the Gauss-Markov-model if there are no multiplicative
dependencies between observation components and parameters to be estimated.
With expanding the functional relationship in 10 to

F (P , d) =

m∑
i=1

[nxiPxi + φnyiPxi − φnxiPyi + nyiPyi + txnxi + tynyi − bi]2

=

m∑
i=1

(nyiPxi − nxiPyi nxi nyi
)φtx

ty

+ nxiPxi + nyiPyi − bi


(12)

it can be however considered, that there exist a multiplicative dependency be-
tween some of the observation components and the parameters to be estimated.
In such a case we have two possibilities to solve the optimization problem namely
Total Least Squares introduced by [11] and Gauss-Helmert-model. Due to the
need for singularity decomposition in total least squares this is a more time con-
suming approach. Compared to this GHM is more complicated formulated but
its application leads to a faster solution calculation. We will use a GHM [14,
p. 212] in order to completely utilize all known uncertainties.
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Gauss-Helmert-Model

In this section the unconstrained formulation of the Gauss-Helmert-model is
explained. As the mathematical context of the functional relationship in 10 is
nonlinear, the model construction has to be linearized first using a Taylor ap-
proximation. Subsequently, the parameters of the nonlinear approach can be
calculated iteratively. Fig. 7.a illustrates the covariance ellipses of three detec-
tions and their projection areas in the map, which are considered in the GHM.
Given is an observation vector

P =
(
p
1
p
2
. . . p

m

)T ∈ Rm×2 , p
i

=
(
pix piy

)T ∈ R2×1 (13)

containing m radar detections. The observations P are assumed to be normally
distributed with known covariance matrices

Σ ∈ R2m×2m (14)

i.e.

P ∼ N
(
Aξ,Σ

)
with ξ as true parameter vecor. (15)

The variance covariance matrix Σ is block-diagonal with

Σi =

(
σixx σixy
σiyx σiyy

)
, i = 1, . . . ,m (16)

as diagonal elements. The assumption is that there are b non-linear relationships
between one or more observation(s) and up to 3 unknown parameters

F (P , d)
!
= 0 (17)

which is used as equality constraint for the optimization problem [24]. For the
linearization of the functional relationship in (10), the optimal solution d∗ =(
t∗x, t

∗
y, φ
∗)T and the measurement P has to be split up into

P̃ = P + V = P − P 0︸ ︷︷ ︸
∆P

+P 0 + V = P 0 +∆P + V, (18)

d̃∗ = d∗0 +∆d∗. (19)

A Taylor point

z0 = [d∗0, P 0]
T

(20)

related to both searched parameters and sensor observations must be chosen [16].
The random variable V is an improvement term. Linearization using a Taylor
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series and the Taylor point in 20 results in

F
(
P̃ , d̃

∗)
= F (P 0 +∆P + V, d∗0 +∆d∗) (21)

= F (P , d∗) |P=P 0

d∗=d∗0︸ ︷︷ ︸
w0

+∇PF (P , d∗) |P=P 0

d∗=d∗0︸ ︷︷ ︸
BT

∗ (∆P + V) +∇d∗F (P , d∗) |P=P 0

d∗=d∗0︸ ︷︷ ︸
A

∆d∗

= w0 +BT (∆P + V) +A∆d∗

= w0 +BT∆P︸ ︷︷ ︸
w

+BTV +A∆d∗

= w +BTV +A∆d∗ = 0. (22)

This equality is the constraint of the cost function

Min
V
VTΣ−1V (23)

which means that the the improvement term V has to be minimized. The ele-
ments of

w0 = (w01, w02, . . . , w0m)
T

(24)

in this equation result from (10) evaluated with p
i0

and d∗0 = (0, 0, 0)
T

. Each

row of A ∈ Rm×3 and each element of matrix B ∈ Rm×2m contains the gradient
vector of (10) with respect to d and P , respectively, evaluated with p

i0
and d∗0.

Finally, the weighted least-squares adjustment

Objective function: Φ (V) = Min
V
VTΣ−1V

Contraints: BTV +A∆d∗ + w

optimization variable: V ∈ Rm×2, ∆d∗ ∈ R3 (25)

can be formulated as Gauss-Helmert-Model. The Lagrangian is used for comput-
ing of necessary and sufficient optimality conditions of this optimization problem.
This is described by

L (V, ∆d∗, k) = VTΣ−1V − 2kT
(
BTV +A∆d∗ + w

)
(26)



68 A. Pishehvari et al.

whereby k contains p Lagrange multipliers. Setting the gradients to zero

∇VL (V, ∆d∗, k) = 2Σ−1V − 2B kT
!
= 0 (27)

∇∆d∗L (V, ∆d∗, k) = −2AT k
!
= 0 (28)

∇kL (V, ∆d∗, k) = −2
(
BTV +A∆d∗ + w

) !
= 0 (29)

(30)

results in the first oder optimality conditions. These conditions lead to

V = ΣB k (31)

AT k = 0 (32)

BTV +A∆d∗ + w = 0. (33)

By inserting (31) in (33) the equation

BTΣB k +A∆d∗ + w = 0 (34)

is obtained. On the basis of normal equations in (34) and 32 a linear system(
BTΣ B A

AT 0

)
︸ ︷︷ ︸

N

·
(

k
∆d∗

)
=

(
−w
0

)
, (35)

can be formulated. The solution of this linear system results in a estimation
for ∆d∗. Due to the linearization of this system, iterations according to the
Gauss-Newton method may be needed to estimate d∗ [21]. In each iteration the
data association for finding correspondences, filtering and weighting have to be
performed. As termination criterion a lower bound for the improvement term V
can be used for instance. A unique d∗ exists, if rank(A) is equal to the number
of searched parameters of the transformation vector d, i.e.

Rank (A) = 3 (36)

and the rank of the composed matrix
[
BT A

]
is equal to the number of con-

straints p with B ∈ Rm×p [14, p. 212] i.e.

Rank
[(
BT A

)]
= p. (37)

The covariance matrix of the estimated parameters can be calculated by the
inverse of a part of N in (35). If there are r Lagrange multipliers, the rows and
columns from r + 1 to the end of the matrix N have to be used for covariance
calculation. The estimated residuals can be calculated by (31).
Given the estimated ego-pose p

vehicle
by dead reckoning and the transformation

vector d∗ the transition from inaccurate position estimation p
dr

to the corrected
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ego-pose by scan matching p
sm

is calculated usingxsmysm
θsm


︸ ︷︷ ︸
p
sm

=

cos (φ) − sin (φ) 0
sin (φ) cos (φ) 0

0 0 1

 ·
xdrydr
θdr


︸ ︷︷ ︸
p
dr

+

txty
φ


︸ ︷︷ ︸

d

. (38)

4.3 Weighting

To make the proposed method more robust against noisy data two novel weight-
ing criteria are used. These methods emphasize the scan areas with more detected
landmarks and reduce thereby the effect of sparse data through enlargement of
their covariance. The following weighting criteria are applied to make the solu-
tion of the GHM more plausible.
• Model-dependent weighting: At sample time k there are m detections
pi, i = 1, 2, . . . ,m correspondent with map lines Lr, r = 1, 2 . . . , n. For model-
dependent weighting the detections are weighted according to their distribution
in the map. Detections on the same map line can be defined as

NLr := {pi 7→ Lr, 1 ≤ i ≤ m}. (39)

Therefore, there are |NLr
| detections on line Lr. Since the matching problem

must be more affected from the map areas with dense detections, the map line
with the maximum number of correspondent detections with

Mmap = max (|NLr
|nr=1) , (40)

members is fully weighted. It is used as a scale for weighting the detections
corresponding to other map lines. To reduce the effect of map features with few
correspondent detections on matching the weight is reduced exponentially using

W2
pi = e

(
η

(
Mmap−|NLr |
Mmap

))
with η > 0, (41)

where η is a tuning parameter. Larger values lead to a faster increase of the
function and accordingly the covariance.
• Model-independent weighting: For this weighting method a radius of specified
distance Dth around each detection is sought for adjacent detections, so that
each point has Gpi points in its neighborhood, where

Gpi := {pi, pj | ‖ pi − pj ‖≤ Dth} (42)

with i, j = 1, 2, . . . ,m. The point with the maximum number of adjacent points
with

Mdet = max
Gpi∈P

(
|Gpi |

m
i=1

)
(43)
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members is fully weighted and is used as the scale for weighting another detec-
tions. Analogous to the model-dependent weighting an exponential function is
used to weaken the influence of sparse detections using

W1
pi = e

(
γ

(
Mdet−|Gpi |
Mdet

))
with γ > 0, (44)

where γ is used for tuning. This method can be also used for filtering by removing
detections with a number of adjacent detections under a threshold. Traditionally
the Euclidean distance between model and data points are used for weighting
[1]. It involves the risk of including outliers due to their small distances from
model features. The weighting and outlier recognition by our proposed method
is independent from the model. Both weighting methods can be used separately
or in combination using

Wpi =W1
pi ·W

2
pi (45)

for each detection pi. To integrate the calculated weights in the GHM the diag-
onal matrix of weights

W := diag (W1, . . . ,Wm) ∈ R2m×2m (46)

is generated withWi = Wi · I with I ∈ R2×2 denoting the identity matrix. The
covariance matrix Σ in (35) must be replaced by

Σ̃ =W ·Σ. (47)

Fig. 7.b visualizes the weighting method for a radar measurement. The radar
detection in the center of regionR1 is fully weighted according to its large number
of adjacent detections in a radius of Dth =1.5 m. On the contrary the detection
in the center of region R2 is surrounded just by one detection and is less weighted
in accordance with the color bar. The radar detections are not spatially equally
distributed and this method increases the effect of sensed features with dense
detections.
In the next section experimental results are presented applying our GHM-based
matching approach and they are compared with some state-of-the-art methods.

5 Evaluation process and experimental results

This section is composed of a set of experiments to verify the performance and us-
ability of the proposed method. They are compared with some point cloud based
matching methods i.e. vanilla ICP, MbICP, PLICP, Fourier-Mellin transform
based (FMTM) and NDT-based matching (NDTM). Some tests are conducted
in a parking garage with several identical floors, which is regarded as a GNSS-
restricted outdoor area. For comparison with dGPS the upper floor with GNSS
availability is used while the method is applicable in all floors. The approach is
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Fig. 7: (a) Three radar detections (black stars), their covariance ellipses and
their directions to the vehicle (blue). The green spaces show the possible surface
of projection into OSM (black lines). (b) By applying weighting methods the
detection in the center of R1 is more weighted than that in R2 because of its
number of adjacent detections in a certain radius. OSM line on the right side
has the most correspondent data and accordingly, they are higher weighted.

also made plausible in a more dynamic environment in urban area. OSMs are
provided as the reference map. In Fig. 8 the digitalized blueprint of the parking
garage using OSM information is illustrated. OSM contains information about
streets, buildings, tracks and much more. However, we extract solely the corner
points of perceptible targets for radars (here walls), which are represented as
red points. Using these points, the blue lines can be formulated mathematically
to be used as feature model for map matching problem. The used test vehicle
is equipped with a gyroscope, four wheel-based odometers as standard features
and four 77 GHz APTIV short range radars. Each sensor provides every 50 ms
one 2D measurement in a 150◦ field of view with a precision of 1◦ in azimuth
and 0.1 m in range up to 40 m and 0.2 m in 80 m distance [13]. For an empirical

Fig. 8: A parking lot as digitalized blueprint using OpenStreetMap information
(gray) and extracted features (red). Blue lines are mathematically defined be-
tween each point pair.
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evaluation of proposed method a highly precise differential global positioning
system (dGPS) with an accuracy of σ = 10 cm is used. This ground truth is
used to compare the results of all ego-pose tracking methods qualitatively and
quantitatively using the mean absolute error (MAE) calculated as

MAE =
1

m

m∑
i=1

(|QdGPS (i)−QM (i)|) . (48)

Here QdGPS and QM are the ground truth data and calculated ego-position,

Fig. 9: Evaluating the proposed algorithm by conducting experiments in a park-
ing garage. The letters S and E demonstrate the start and end position of drives,
respectively. The dGPS trajectory (black), estimated ego-position by dead reck-
oning (red) and the improved estimation by proposed matching algorithm (blue)
are illustrated. The vehicle heading in scenarios (a), (b) and (c) are shown in
(d), (e) and (f), respectively. In all scenarios an occupancy grid map is gener-
ated based on improved ego-pose by matching, which overlaps the environment
representation (black lines).

respectively, and m is the number of measurements. Fig. 9 illustrates the results
of three experiments in the parking garage. Driven tracks are curvy to deter-
mine how the radar scan matching copes with high dynamic driving maneuvers.
The vehicle starts and ends at the positions denoted by S and E, respectively.
Fig. 9.a, 9.b and 9.c show the vehicle position trajectory and the Fig. 9.d, 9.e
and 9.f the vehicle orientation in these scenarios, respectively. The ground truth
data is shown in black, estimated ego-pose by dead reckoning in red and its
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improvement applying proposed matching method in blue. In order to maintain
the clarity, the ego-trajectory retained from state-of-the-art methods are not il-
lustrated here and we analyze them later. The more curvatures the driving path
contains, the faster fails the dead reckoning to track the vehicle’s pose due to
the sensor error accumulation over time. All figures depict graphically that the
proposed matching method produces accurate displacement estimates, as the
blue trajectory is noticeably close to ground truth. Using radar scans an OGM
is generated for all scenarios, its overlap with the environment model confirms
the accuracy of the proposed scan matcher as well. The qualitative evaluation
of GHM-based scan matching (GHM-SM) performance for scenarios in Fig. 9 is
represented in Table 1. It contains the results of the quality levels using (48) and
error variances after 2400 measurements. The results are compared with ego-pose
estimation purely from dead reckoning (DR) and its improvement with state-of-
the-art matching approaches. All matching methods prevent the divergence of
the estimated ego-pose from the ground truth. Using FMTM results in a more
inaccurate ego-pose estimations and considerably high error variances resulting
in a noisy ego-trajectory. Applying the proposed matching method, the estima-
tion is improved in most cases, which is reflected in the reduction of calculated
quality level as well as in error variance. By using the proposed weighting meth-
ods (WGHM-SM) the estimation is further improved with a slightly reduced
error variance or without its modification. While directly targeting the improve-
ment of ego-localization quality, the robustness as well as the convergence rates
of the algorithms have to be analyzed as well. For verifying the convergence rate
we consider iterative algorithms i.e. ICP-based methods, which require the cor-
respondences between the map and observations. The convergence is monitored
by changing the sum of squares

SOS =
1

m

m∑
i=1

|Mi −Di|22 (49)

where D and M are the observation point cloud and its correspondent map
points, respectively, and m is the number of measurements. Fig. 10.a illustrates
the convergence with an initial position error of 6 m and Fig. 10.b with a initial
orientation error of 6◦.

Fig. 10: Convergence rate of scan matching methods for (a) 6 m initial position
error and (b) 6◦ initial heading error.
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Table 1: Quality level (QL) calculated using MAE and error variance (var) for position
(P) and heading (H) estimation by dead reckoning (DR) and its combination with
state-of-the-art methods as well as with proposed technique without using weighting
methods (GHM-SM) and after applying them (WGHM-SM) in scenarios a, b and c in
Fig. 9. The units for position and heading are meter and degree, respectively.

DR Vanilla ICP MbICP PLICP

S QL var QL var QL var QL var

P
a 2.16 3.40 0.325 0.024 0.29 0.031 0.32 0.022
b 3.5 11 0.288 0.044 0.58 0.32 0.31 0.05
c 4.65 30 0.36 0.027 0.34 0.021 0.36 0.027

H
a 3.20 14.9 1.41 1.067 1.458 1.1 1.43 1.07
b 18.5 180 1.36 0.65 1.11 0.93 1.44 0.62
c 21.7 210 1.32 0.94 1.35 1.19 1.32 0.94

NDTM FMTM GHM-SM WGHM-SM

S QL var QL var QL var QL var

P
a 0.34 0.047 0.56 0.212 0.30 0.017 0.27 0.01
b 0.49 0.15 0.59 0.28 0.23 0.031 0.21 0.027
c 0.24 0.02 0.41 0.11 0.28 0.02 0.23 0.016

H
a 1.76 1.79 3.74 10.57 1.39 0.89 1.34 0.74
b 1.73 1.10 2.79 5.17 1.21 0.68 1.04 0.68
c 1.47 1.11 2.27 4.19 1.05 0.76 1.02 0.76

The first row of the Fig. 11 illustrates the position estimation error and the
second row the orientation estimation error versus each position and orientation
error. Obviously, PLICP and WGHM-SM are robust enough against an initial
pose error in this range. However, WGHM-SM results in a smaller position and
orientation error even in the case of large initial pose errors. PLICP has a more
precise and quick performance compared with Vanilla ICP and MbICP. How-
ever, WGHM-SM converges more quickly after only 8 iterations in Fig. 10.a and
has the same convergence rate as PLICP for initial heading noise. It results in
both cases in a smaller SOS as PLICP. ICP and MbICP need more time to
converge and MbICP fails in case of large initial heading error. From now on,
only matchers with best performance are compared, i.e. WGHM-SM, Vanilla
ICP and PLICP. In order to verify the robustness of the matchers we run 1681
iteration for each algorithm and add a noise in a certain range to the initial
pose. A critical aspect of point cloud based matching algorithms is the run time.
Since PLICP converges quicker than Vanilla ICP and has a better performance
we compared its run time with run time of WGHM-SM in MATLAB per scan.
With 0.02 s the proposed method is approximately as twice as fast compared
to PLICP with a run time of 0.041 s. WGHM-SM is real-time capable and its
run frequency is higher than the measuring frequency (20 Hz). Note that the
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digitalized map has to be processed one step more for ICP-based methods, since
the feature map has to be discretized and transformed in a point map. Depend-
ing on discretization resolution it can result in a big data volume if the map
belongs to a large area e.g. a part of a city. The higher the number of points,
the longer ICP-based methods need to find the correspondences. The OSM of
the parking garage contains only 50 lines and its transformation in point cloud
with a resolution of 0.1 m results in a point map with 4575 points for this small
area.
During these experiments the environment remained static. However, the de-
scribed algorithm showed to be robust even when the assumption of a static
environment is violated like scenarios with people walking, driving and parked

Fig. 11: Robustness against inaccurate initial pose. The first column illustrates
position and the second column the heading estimation error for initial position
error up to 6 m and initial heading error up to 10◦ on 1681 iterations. Top:
WGHM-SM, middle: PLICP, bottom: Vanilla ICP.
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Fig. 12: Ego-position estimation without using WGHM-SM (red) and after ap-
plying it (green) in a real scenario in urban area. Blue lines show the edges of
the buildings. Photo: Imagery c©2018 Google, Map data c©2018 GeoBasis-DE/BKG
( c©2009).

vehicles in urban environments. Fig. 12 shows an experiment in urban environ-
ment. The ego-position trajectory estimated by DR has an overlap with the
buildings (red) which is not the case using matching algorithm (green). Fig. 13
illustrates another evaluation of the proposed map matching in the area sur-
rounding the APTIV building in Wuppertal. The OSM lines are shown in blue
which contain information of buildings, fences and walls. During this experi-
ment the environment is dynamic. There are standing and walking pedestrians
(white stars) as well as parked and driving vehicles which are shown as yellow
and red stars, respectively. There are some stationary objects such as containers
covering the buildings which are not registered in the map. The red trajectory
shows the result of self-localization without applying map matching and the
green trajectory after its application. As in the experiment in Fig. 12 there is an
overlap between estimated ego-trajectory and the map lines by using DR (red).
WGHM-SM is evaluated with 182416 measurements in different scenarios. The
quantitative results confirm the performance of the proposed scan matcher in
static as well as in dynamic environments. It is robust against inaccurate ini-
tial pose, converges faster that ICP-based methods and causes in most cases a
smaller estimation error.

6 Conclusion and future work

In this paper a fast scan matching algorithm is proposed to improve the inaccu-
rate ego-pose estimated basically by dead reckoning using a map which consists
of mathematically described lines. The vehicle displacement caused by drift and
bias of mechanical motion sensors is minimized by the matching of radar mea-
surements to features of the environment representation. Therefore, this match-
ing method belongs to the class of point-to-feature matching algorithms. Scan
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Fig. 13: Validation of the proposed map matching in a outdoor dynamic envi-
ronment with pedestrians, parked and driving vehicles. Their rough places are
shown as white, yellow and red stars, respectively. Blue lines show the edges of
the buildings. The red and green trajectories are generated without and with
applying the proposed map matching approach, respectively. The letters S and
E show the start and end point. Photo: Imagery c©2018 Google, Map data c©2018
GeoBasis-DE/BKG ( c©2009).

matching using radar measurements is challenging because of the sensor noise,
measurement sparseness and multiple path propagations. The presented method
deals with this problem using appropriate filtering, novel weighting methods and
considering radar measurement uncertainties in an iterative optimization prob-
lem by using the Gauß-Helmert-Model. Various experiments have been carried
out in outdoor areas with different driving dynamic maneuvers to evaluate the
matching method against dead reckoning and other matching methods in dif-
ferent scenarios. Experimental results confirm qualitatively and quantitatively
the accurate and robust performance of scan matching for improving the self-
localization precision.
Future work is expected to estimate the vehicle initial pose by applying proba-
bilistic methods for global localization and matching of 3D radar measurements.
Furthermore, a classification of the stationary radar observations to achieve a
better data association could help to improve the algorithm performance. For
instance the stationary observations caused by parked vehicles in urban environ-
ment can be classified to avoid their association with the environment model.
Using environment models with more object information such as highly accu-
rate high-definition (HD) maps is another possibility. These maps are generated
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using Lidar, cameras, dGPS, etc. and they do not only contain information of
walls and buildings but of many other objects such as trees, guard rails, etc. In
this case the map matching algorithm has to be extended to cope not only with
a model consisting of lines.
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Dümmlers Typoscripts. Dümmler, 1980.
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