International Journal of Transdisciplinary Al

Vol. 1, No. 1 (2019) 64-91

© KS Press, Institute for Semantic Computing Foundation
DOI: 10.35708/TAI1868-126246

Arabic Poem Generation Incorporating Deep Learning and
Phonetic CNNgubwora Embedding Models

Sameerah Talafha and Banafsheh Rekabdar

Department of Computer Science, Southern Illinois University
Carbondale, Illinois 62901, USA
sameerah.talafha@siu.edu
brekabdar@cs.siu.edu

Received (07/20/2019)
Revised (08/18/2019)
Accepted (09/30/2019)

Abstract. Arabic poetry generation is a very challenging task since the
linguistic structure of the Arabic language is considered a severe chal-
lenge for many researchers and developers in the Natural Language Pro-
cessing (NLP) field. In this paper, we propose a poetry generation model
with extended phonetic and semantic embeddings (Phonetic CNNgybword
embeddings). We show that Phonetic CNNgybwora embeddings have an
effective contribution to the overall model performance compared to
FastTextsubwora embeddings. Our poetry generation model consists of
a two-stage approach: (1.) generating the first verse which explicitly in-
corporates the theme related phrase, (2.) other verses generation with the
proposed Hierarchy-Attention Sequence-to-Sequence model (HAS2S), which
adequately capture word, phrase, and verse information between con-
texts. A comprehensive human evaluation confirms that the poems gen-
erated by our model outperform the base models in criteria such as
Meaning, Coherence, Fluency, and Poeticness. Extensive quantitative ex-
periments using Bi-Lingual Evaluation Understudy (BLEU) scores also
demonstrate significant improvements over strong baselines.

Keywords: Recurrent Neural Network; Attention Mechanism; Natural Lan-
guage Processing, Arabic poetry generation.

1 Introduction

Poetry is a high-level form of linguistic communication, in which an opinion is
conveyed that satisfies both aesthetic and semantic constraints. Since poetry is
one of the most expressive forms of language, it requires an understanding of
many aspects of language, including phonetic patterns such as prosodic struc-
ture, rhyme, rhythm, and alliteration. Composed poetry also requires a deep
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understanding of the meaning of language. Poetry composition can be divided
into two sub-tasks: the problem of content, which is concerned with a poem’s
semantics, and the problem of form, which is concerned with the aesthetic rules
that a poem follows (these rules describe aspects of the literary devices used
and are usually highly prescriptive). Creative writing and poetry are artistic
benchmarks that both Artificial Intelligence (AI) communities and NLP com-
munities would like to surpass in the years to come. The task of automatically
generating poetry is challenging, as it involves many complex aspects. There is
no well-defined route by which poems are created by human poets. However, it
is possible to set down some characteristics that a poetic text should manifest.
This suggests that the generation might be achieved by a creative algorithm
which deals with the generation of a poem by computers in a fashion that can
be deemed creative and meaningful. In recent years, automatic poetry genera-
tion approaches have been limited to employing rules or templates [12,13,15],
genetic algorithms [22,23], summarization methods [59], and statistical machine
translation methods [60].

These approaches focus on what is being written (content) but fail to consider
the way it is being written (form). More recently, deep learning approaches
have emerged as a promising discipline, which considers poetry generation as
a sequence-to-sequence generation problem [25,30,31]. However, most research
published in this field is restricted to English [11], Chinese [23,25,30] , Spanish
[12], and Japanese [12,14].

Automated tools, such as Part of Speech (POS) taggers [1], and Named
Entity Recognition (NER) [2] are adapted to deal with Arabic text as efficiently
as English [3,5]. Stanford CoreNLP[4], Farasa [5], and MADAMIRA [6] are the
most efficient text processing tool-kits for the Arabic language. Although deep
learning has played a crucial role in developing many applications of NLP, the
applications that support Arabic language are still limited and restricted to just
a few tasks, like sentiment-analiysis and machine translations [7,3,9].

In this paper, we propose a two-stage multi-modal Arabic poetry genera-
tion approach. To do this, we used two different types of word embeddings: (1.)
FastTextsybword embeddings which are pioneered by Bojanowski and others [50]
and used by [35] for generating Arabic poetry, (2.) Phonetic CNNgybword €mbed-
dings constructed by using two models: the CNN-based subword-level embedding
model [10], and the phonetic-level model inspired by [11]. Our poetry generation
approach can compose a poem in two steps. First, the first verse is generated
by the Backward and Forward Language Model (B/F-LM) with a Gated Re-
current Unit (GRU) cell [29]. Second, other verses are generated sequentially by
HAS2S which is a modified Bi-GRU encoder-decoder with a hierarchical neural
attention framework.

In (Section 2), we start with related work on automatic poetry generation
before setting out a restricted definition of Arabic poetry as a text that embodies
meaningfulness, grammaticality, and poeticness (Section 3). We then describe
our proposed approach for Arabic poem generation (Section 4), and present
results of our experiments conducted to evaluate the performance of our model
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(Section 5). Finally, we conclude with some discussion about future avenues of
research (Section 6).

It must be pointed out that the transcription of Arabic examples in this
paper follows the Habash—Soudi-Buckwalter (HSB) transliteration scheme [37]
for transcribing Arabic symbols. This scheme extends Buckwalter’s scheme to
increase its readability while maintaining the one-to-one correspondence with
Arabic orthography as represented in standard encodings . The following is the
HSB transliteration map with different Buckwalter scheme values indicated in
parentheses: TA (|), 1A (>), 5% (&), 1 A (<), .65 (), 5 h (p), & (v), 30 (),

G55, 5D @), ¢ (EE (8)s¥(Y), a), 1K), 0N, " (o)

2 Related Work

Neural poem generation systems provide not only an elegant dream to create
intelligent systems, but also the possibility of developing many interesting ap-
plications for education in poetry and literary research. In this section we will
examine three kinds of poetry generators and discuss their relative merits and
differences.

2.1 Constraint Handling Rules

This kind of generator involves the use of Constraint Handling Rules (CHR) to
create a poem automatically. Here, words are chosen randomly from a hand-
crafted dictionary to fill gaps in incomplete linguistic structures, defined either
as a predefined template or via some phrase structure rules. However, the po-
ems generated are not solely created by a computer, because the computer is not
“creative”, only following the rules set by CHR’s authors. Applications of this

type includes Hitch’s haiku generator [12], Masterman’s haiku generator [13],
Gaiku’s generator [14], and ALAMO "rimbaudelaires” [15]. Similar applications
are available on the web, such as ELUAR [16]. Some of these applications employ

specific heuristics to simulate the appearance of coherence and poeticness, such
as assigning ad-hoc ‘emotional categories’ [17,18].

2.2 Involvement with Artificial Intelligence

A* search algorithm [19] and Genetic Algorithm (GA) [20] are the tools for in-
telligent searching through many possible solutions. Fillmore [21] investigated
five different techniques to generate a poem, implementing A* search to find
high-probability poems. Zhou and others [23] used GA as a form of sufficient
stochastic search that relies on random traversal of a search space with a bias
towards a more promising solution that satisfies the three constraints of mean-
ingfulness, grammaticality, and poeticness.

Building a successful poem’s generating model requires training against a
huge database to create verses with coherent meaning, and relatively correct
meter, without blatantly copying original work. However, the traditional Al
strategies for generating poems lack sufficient ability to process a large num-
ber of poems and often require expert knowledge to pick characteristics, which
determines the outcome performance of learning [24].



67

2.3 Deep Recurrent Neural Networks

A deep Recurrent Neural Network (RNN) approach is a powerful learning model
that achieves state-of-the-art results in generating poetry. This model takes ac-
count of syntax, rthythm, and meaning. In 2016, Wang and others [31] used the
attention-based sequence to sequence a model with Long-Short Term Memory
(LSTM) units to generate a Chinese Song ”iambic”. The model asks a user to
insert the first line to generate the rest of the song’s lines sequentially. The au-
thors used the Word2Vec approach [20] for learning the vector representations
of the words. The attention mechanism [410] was used to improve the semantic
relevance between the song’s sentences. The experimental results were evaluated
based on human and automatic evaluation methods.

Yan [30] built a hierarchical encoder-decoder framework to compose clas-
sical Chinese poems, such as quatrains (Jueju in Chinese). The authors used
the Word2Vec embedding approach [26]. A quatrain is generated in three main
phases: intention representation, subsequent generation, and iterative polishing.
In the first phase, either Convolutional Neural Network (CNN) or RNN model
are used to capture the meaning of users’ writing intentions to extract a key-
word used to generate the first line of a poem. In the second phase, the first
line encodes via an RNN-encoder as a hidden vector, then decodes via an RNN-
decoder to generate a poem line-by-line, in which new line generation depends
on all previously generated lines. The polishing schema was designed to mimic
the behavior of a poet who modifies a poem many times until they get the final
draft. Similar to a process-driven writer, in this phase, the first draft of the gen-
erated poem will be passed into the RNN encoder-decoder model as the input
many times to eventually get the best possible final draft.

Wang and others [25] proposed a Bi-GRU-based encoder-decoder model with
the attention mechanism to generate Chinese classical quatrains. To do this, they
used the Word2Vec embedding approach [26]. The generated model analyzes a
user’s context information to extract sub-topics as keywords using the TextRank
algorithm [32], and then generates each line of the poem sequentially by taking
one sub-topic and all the preceding lines as input in each time. The model
has succeeded in generating poems with correct rhythms and tonal patterns
automatically by learning constraints from the training corpus, while the rhythm
and tone in all the above models are controlled by extra structures.

3 Features of Classical Arabic Poems

In ancient times, poetry had great stature among Arabic tribes, often used to
tout the glory of great victories. To this day, Arabic poetry continues to enjoy
significant stature in the literary, intellectual, and political life of around 500
million speakers. Classical Arabic poems are characterized by many features.
Some of these features are specific to Arabic poems, and others are common
to poems written in other languages. In the next section, we describe the main
Arabic poetic features.
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Verse 1|Hemistich 1 : (s s Zﬁj gl

. Get worse, o trouble, so that you may be lifted
Hemistich 2 : CUL ) o3l B

For your night has announced the breaking of
the dawn

Verse 2|Hemistich 1 : )Cf:' 4 S (3&}

: And even the darkness of the night has its
gleams

Hemistich 2 : CJ:J\ J.j olin 2>

until the father of these gleams overwhelms
them

Fig. 1: Example of Arabic poetry with two verses

3.1 Structure

Arabic poems consist of a set of verses, where there is no limit on the number
of verses in a poem. However, a typical poem contains between twenty and a
hundred verses [33]. Compared to lines in standard text, verses of the poem are
short and of equal length. A line of a verse is divided into two halves called
hemistichs, which also are equivalent in length, forming a couplet. Fig. 1 shows
the two verses taken from "The Poem of Relief” (al-Munfarijah) [34].

3.2 Rhyme

Arabic poems follow a strict rhyme model, in which the last syllable of each
verse in a poem must be the same. If the last syllable in verse is a vowel, then
the second-to-last syllable of each verse must also be a vowel. There are three
basic vowel sounds in Arabic. Each vowel sound has two versions: the long and

short vowels. Short vowels are diacritical marks such as (a3, :, Fatha, a), (5 w57,

-, Kasrah, i), and (4, ; Dammah, u), which are placed above or under the letter
in words. Long vowels, on the other hand, are written as whole letters ( |, Alif),
(s, Waw) and (i, Ya ). Compared to an English poem’s rhyme, tuning an Arabic
poem’s rhyme is not incredibly difficult, but it is still an essential component of
the poetic form for the rhyme identification process.

3.3 Meter

The meters of classical Arabic poetry were modeled by famous lexicographist,
grammarian and prosodist Al-Khalil Bin Ahmad Al-Farahidi in the eighth cen-
tury. Al-Khalil’s system consists of fifteen meters. Later, a student of Al-Khalil,
Al-Akhfash, added the sixth meter. Arabic poetry must follow one of these to
be considered correct [33]. The meter of rhythmical poetry is known as a sea
(£, bHr). The measuring unit of the meter is known as a foot (Azw/, taf ylh),
with every meter containing a certain number of feet that the poet must observe
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in every verse of the poem. The feet are classified into two types based on the
number of syllables, as shown in Table 1.

Al-Khalil’s system is quantitative, relying on syllable weight, with each meter
constructed from two basic units called peg ( &, wtd) and cord (_aw, sbb). Each
foot must contain double cords or a peg and a cord, and must not contain two
pegs or three consecutive cords. A cord consists of two letters, while a peg has
three letters. A cord composed of a vowelize (& »z, mutaHarik), which is a
letter provided with a diacritical mark (K _~, harakah) — generally a short vowel
— followed by a vowelless consonant (S, sAkn) which is a letter provided with

Sukun (08w, _) or the prolongation letter — generally a long vowel letter — is
called a light cord (e aw, sbb xfyf), while a heavy cord (& ., sbb qyl)
consists of two vowelizes. A peg composed of two vowelizes followed by a vowelless
consonant is called a joined peg (Cf &y, wtd mjmw ), while a separated peg (X,
33,2, wtd mfrwq) consists of two vowelizes separated by a vowelless consonant.

3.3.1 The Numerical Prosody Method One of the essential character-
istics of Arabic poetry is the rhythm — how the words actually flow, often with
the meter — which is considered the crown of this type of poem. Analyzing the
classical Arabic poems to identify their meters is a complicated task. Recently,
building efficient tools such as BASRAH [38], a system that automatically iden-
tifies the meter of Arabic poetry by using the numerical prosody method, has
helped inexperienced users determine the meter of Arabic verses easily. The fol-
lowing algorithm suggested by Khashan [39] shows the steps applied to convert
an Arabic verse from the dictation form to the numerical prosody form:

e Deleting any other special symbols (%, !, (, ), . . .) which exist in the verse.

e Arabic prosody is considered a phonetic science. It depends on pronounced, not
on written language and this requires the adoption of the following rule: letters
with pronunciation are written while letters without pronunciation are not
written. Therefore, some letters must be added, and others must be omitted,
as follows:

(a) If there is Shadda (5.%, _) or Maddah (s4s, -) above a letter, the letter will
be duplicated by making the first one a vowelless consonant and the other

a vowelize. For instance, (4, md ~a) becomes ( s>, md - da).
z 4

(b) If there is any type of Tanwin ( (%, ---) above or under the letter, it must

be replaced by (u, n - ). For instance, (:));?, jnwbil) becomes (d)a-, jnwbu
n-).

(c) The assimilated Lam (des! eI, AllAm Alsmsyh) will be deleted from
the definite article known as ( J\, Al). For instance, (dsles]!, AlImHAfDh)
becomes (iksl2|, AmHAfDR).

(d) The letter (1, Alif) will be added to some sign names. For instance, (lds,
hoA) becomes (13Ls, hAOA) .

-

(e) Any of the short vowels — (., Fatha) , (i, Damma ), and ( ., Kasra) — which
appears over or under the pronoun (4, h) at the end of a word or the end



Table 1: : The eight feet of Arabic poetry

Foot Dictation form

Prosodic form Phonological transcription Symbolic prosody form Number of letters

Foot construction

e fa uwlun -
el faA ilun -

oS oro S

Olaziws mus - taf - ilun -
o5 P

Selee mafA iylun -
S - Sor

oYV e maf - uwlAatu
Q.\%nm faA ilAatun -

Cﬁﬁ» mufaA alatun -

e

CHon. mutafaA ilun -

-
de - 6

fauw - - lun -

faA - - ilun -
mus - - taf - - ilun -
ma faA - - iy - lun-
maf- - uw--laA - tu
faA - - ilaA - - tun-
mufaA - -ala - tun -

muta - faA - - ilun-

//0-/0
/0-//0
/0-/0-//0
//0-/0-/0
/0-/0-/0/
/0-//0-/0
//0-//-/0
//-/0-//0

E RS BN R R R N A

joined peg - light cord
light cord - joined peg
light cord - light cord - joined peg
joined peg - light cord - light cord
light cord - light cord - separated peg
light cord - joined peg - light cord
joined peg - heavey cord - light cord
heavey cord - light cord - joined peg

Note: (/): a vowelize (moving letter), (0): a vowelless consonant (constant letter).

70
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of a hemistich will be replaced, by its corresponding letters known as ( i,

Alif), (;, Waw) and ( :;, Ya), respectively. For instance,(z_), lhu ) becomes
(543, Thw - ). i

(f) The conjunctive ( e\ s3®, hmzh AlwSl ) within a word from the dictation
form will be omitted. For instance, (S| 5, w Akt§Ab) becomes (oS 4,
w ktyAb).

(g) The first vowelless consonant letter from a pair of consecutive vowelless
consonant letters will be omitted except where this pair appears at the end

of each hemistich. For instance, ( r:::H 5 < Y, 1A tnhrn - A - lytym) becomes
( (::.Q\ < Y, 1A tnhr A - lytym).

e Representing each vowelless consonant by code ‘0’, and each vowelize by code
‘1.

e Grouping the binary codes into segments. Each segment must start with (1)
and end with (0). Then, the verse is segmented by matching the longest prefix
to one of these and assigned a code to each segment (i.e., 110 = 3 and 10
= 2). Sometimes there is still one vowelize letter (1) alone; in this case, we
leave it (e.g., 1110 = 13). The numeric code of the verse is compared with all
general patterns for the sixteen meters to identify the meter of the verse. Table
2 shows an example of converting a verse written in the long meter ( J, s,
Al-AlTwyl ) from the dictation form to the numerical prosody form.

4 Proposed Approach
4.1 Embedding

Embedding models revolutionized the way a number of NLP tasks can be solved,
essentially by replacing the feature extraction and engineering by embeddings
that are then fed as input to different poetry generation architectures [44]. Word
embedding models effectively capture the implicit semantics of words learned
from a large corpus of poetry data. However, poetic texts also involve phonetic
patterns where rhythm, metrics, rhyme, and other features like alliteration or
figurative language play an essential role. Therefore, we suggest constructing
embeddings which contain both the semantic and phonetic information of Arabic
poetry.

In order to study the importance of extensions of word embeddings with
phonetic information for overall performance of the model, we use two different
types of embeddings: (1.) FastTextsubword €mbeddings [50] which are simple and
efficient word embeddings for rare words, n-grams, and language features and
have been successfully used in [58,35]. (2.) We propose Phonetic CNNgybword
embeddings which are concatenated embeddings that contain information on
the phonetics of every word alongside with its vectorized word representation.

4.1.1 FastTextsubwora Embeddings Within the word embedding model,
words are represented as dense, low-dimensional numerical vectors, which in turn
allows capturing of syntactic and semantic similarities between words, in which
similar words will have similar numerical representations; the common examples

of this model are Word2Vec [26] and GloVe [15]. However, both Word2Vec [26]
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Table 2: Example shows the process to convert a verse from dictation form to numerical prosody form.

Verse wg L.w Jui m:n_ rimu\ﬁ
O Amawiyyah, wealth comes and goes

co o

S5 Sl g G £

, And only words remain

Dictation form AamaAwiyd ~A nd ~a AlmAla a_ Adi wrAyi_Hi
wayab - qay mina AlmAli AlAaHaAdiy u waAldd ~ik -

PO

S U VPN B

Prosodic form 0= 1, O &

Phonological transcription of the words

wa/ ra/A - vi/ Hi/n -

wa,/ ya/b - qa/y - mi/ na/al -
di/y - u/ wa/d- oi/k - ru/w -
1/1/0 1/0 1/1/0 1/0  1/0
1/1/0  1/0 1/1/0 1/0  1/0

Numerical prosody form 3 2 3 2 2 3 2 3 3
3 2 3 2 2 3 2 3 2

Binary prosody form

Aa/ma/A - wily- yi/A/n-  na/l-

di/n -

li/1- Aa/ Ha/A -

¢ U
NSO S
ma/A-  la/ a/A-
ma/A -
1/1/0  1/0  1/1/0
1/1/0 1/0 1/1/0

1/1/0
1/1/0

Note: (1): vowelize (movining letter), (0): vowelless consonant (constant letter).
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and GloVe [15] suffer from the data sparsity problem, in which they consider
different forms of the same word as entirely unrelated entities. Stemming [16] or
lemmatization [47] technique is usually used to reduce the inflectional forms from
each word to a common base [48]. Different forms of a word will therefore have
the same vector representation in a context. These techniques have succeeded
in improving the performance for specific tasks such as the polarity detection
[57], but in the text generation task — particularly, in Arabic language — it is
essential to keep the different inflected forms of the words to avoid generating
weakly constructed sentences [49].

FastText subword-level embedding model [50] (Fig. 2a) builds an embedding
vector by breaking a word into the character n-grams. This approach can capture
semantic and morphological information better than the word-level embedding
approaches — Word2Vec [26] and GloVe [15] — and provided outstanding perfor-
mance to deal with out-of-vocabulary and rare word problems, since it is able
to produce a better representation of derivational word analogy. Based on the
skip-gram model in Word2Vec [20], it represents the composition function as the
sum of the subword vectors of the word. Formally, the composition function is

defined as:
fw) =37 (1)

gEGw

Where ¢ is the character n-gram, 7 is its corresponding n-gram vector with
length N and G, is the set of character n-gramas for word w. For example,
when n=3, G,, for word "matter” is defiend as <ma, mat, att, tte, ter, er>. <
and > are padding at the start and end of the word.

4.1.2 Phonetic CNNgybwora Embeddings The proposed embeddings
— Phonetic CNNgypwora €mbeddings — comprise of two distinct embeddings,
concatenated together. First, each word w is processed using the CNN-based
subword-level embedding model [10], which results in word embedding W for
each word. Second, each word is also processed using the phonetic level model, as
presented in [10], which gives the phonetic level embedding of the word Pho_w.
Finally, the resulting word embedding from this model is the concatenation of
CNN and phonetic embeddings, specifically, for any word w, the resulting em-
bedding is:

W = [W; Pho_w] (2)
4.1.2.1 CNN-based Subword-Level Embedding Model
Li and others [10] proposed the CNN-based subword-level composition func-

tion for learning word embeddings. CNN-based subword-level embedding model
(Fig. 2b) is able to distinguish different derivation types, with the advantage of
the former better than FastText subword-level embedding model [10,56], since
simple summation for all vectors of character n-grams belonging to a word in
FastTextsupwora would not be the best choice for composing subword informa-
tion.

Similar to FastText subword-level embedding model [50], the vectors of char-
acter n-grams are first extracted from a lookup table. Those vectors form a
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Contextual Word Hybrid Training Schema

[Word 1] [Word z] [WOr a 3] (optional)

1
1
Fully Connected Layer (O O O O - Q000
1D Convolutio

Icharichar2char3char4!

Lookup Table (character vectors) T

Characters or Character N-Grams]

L°°"“" s
Target Word|- - - - - - — - - =
(word vectors)

(a) FastText subword-level embedding model

Contextual Word Hybrid Training Schema

(optional)
[Word 1] [Word 2] [Word 3]
I sum !
1
Fully Connected Layer (O O O Q)¢ --- r QOO0
Flatten . —

| - -
Max PoolingT

- ==

.
! I
! |
! I
! I
! I

l

Icharlchar2char3char4

[Characters or Character N-Grams]

*Lookup Table

Target Word- - - - - - - - - = - -

- (word vectors)
(b) CNN-based subword-level embedding model

Fig. 2: Illustration of subword-level word embedding models

matrix with size N x L, where L is the number of character n-grams. We ap-
plied 1D convolutions, which are used to extract local features of size, ranging
from one to seven in parallel, then performed max-pooling, and concatenated
the output. Each of the convolutions uses 150 filters. The output of this model
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is a fully-connected layer with the number of units corresponding to the desired
size of embedding. The output of the fully-connected layer is used for predict-
ing contextual words, by using negative sampling [01], a standard practice to
optimize algorithm performance.

4.1.2.2 Phonetic-Level Model

The word embedding approaches, discussed above, focus on writing and utilize
context, weight, dependency, and morphology, but they ignore the representa-
tions of pronunciation, including rhyme and rhythm which are considered the
cornerstone in the composition of the Arabic poem. In order to create phonolog-
ical subword representations, we suggest to use a phonetic-level model inspired
by [11]. The model is comprised of two steps: First, we transliterate the dic-
tation representation of each sub-word to its phonetic representation, which is
basically its phonological transcription side by side with its binary prosody code
(see Section 3.3.1). Second, training the Bi-GRU-based language model [10] on
the phonetic encoding, we run GRU over all the vectors of character n-grams in
the word’s phonetic representation Pho_w. The hidden layers at each position
are then summed together, and the resulting vector is fed into a fully connected
layer to form the final vector of Pho_w. We empirically set the hidden layer size
of GRU to NV x 2.

4.2 Method Overview

Determining the main theme and sub-themes of a poem, and taking care to note
the semantic similarity between verses, are some of the basic rules which poets
follow from the writing of their outline to the last touches of the final draft.
Our model can automatically generate an Arabic poem in two stages: (1. ) the
keywords extraction and (2. ) the generation stage, as shown in Fig. 3.

In the keywords extraction stage (Section 4.3), M keywords (k1, k2, ..., knr)
are extracted representing the sub-themes of M verses. In the generation stage
(Section 4.4), each verse (v1, va, v3, .., var) will be generated by taking a new key-
word from a set (ki, ko, ..., kas) and all the previous generated verses to improve
the semantic relevance between the current line generated and all the previous
generated lines. For example, the model will take (k1) as the input to generate
(v1); will take (ko) and (v1) as the input to generate (vs); ...; and will take k;,
and (v1,v2,v3,..,v;-1) as the input, to generate the i-th verse of a poem v;; ... .

4.3 Keywords Extraction

There are assumptions in our model that a sub-theme of each verse is represented
by one keyword, and the number of extracted keywords from an input query must
be equal to the number of verses in the poem which will be generated.

Hence, it is essential to extract the most important words from an input
query of a too-long sequence of words, keeping the original order as the keywords
sequence to achieve better results.

The traditional statistical keyword extraction methods are not suitable to
evaluate the importance of the words in a poem’s context since they ignore
the semantic similarity [54]. In our work, we use the hybrid model proposed by
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Keywords (Sub-Themes)
Input Query

Laild (31l conajf S o)
Al sl salhdle ol
o i

Keyword Extraction

The First Verse Generation with B/F-LM Model
- . n A

A9l i D3 ] A 308 . i

Enough of the the separation For I hope and fear your passion Parting
Y-
29 L s Atk 35 Ll G i e
O Obail, longing aches my tired soul your aversion has made me ill A Ablah

£ 0 2548 s i ity iy 0 320 ¢ B o

If the heart is full of your love Why would it listen to the deceitful Fond of
Other Verses Generation with HAS2S Model

Fig. 3: The Block Diagram of The Proposed Algorithm

Wang and others [55] to extract the keywords considering the semantic similarity
among them. It is a graph-based ranking approach which uses the information
provided by both word embedding vectors and local statistics. Each candidate
word embedding vector is represented by a node in the graph, and the edges
are added between two words according to their co-occurrence; the edge weight
is set based on the attraction value attr as follows. The higher attraction value
indicates more semantic similarity between the two words.

2% freg(n;,n;) * freq(n;) = freq(n;) 3)
D« (freq(ni) + freq(ny))

where D is the Euclidean distance between the two words’ nodes n; and n;,
freq(n;) and freg(n;) are the frequency of appearance of the node n; and the
node n; respectively in a context, and freq(n;,n;) is the frequency of appearance
of both nodes n; and n; together in a context.

Evidenced by the calculation of attr value, two words with a strong semantic
relationship do not necessarily share importance if both have appeared uniquely
in a context. On the other hand, two words may be said to share importance if
one has at least a distinct high frequency, and they each have a robust semantic
relation.

The score S(n;) of a node (n;) is initialized to a default value (e.g 1) and
calculated iteratively until convergence according to the following equation:

attr =

attr(n;, n;)

Sni =(1—-d +d
(ni) = ( ) aneE(nj)attr(nj,nk)

n;€EE(n;)

S(n) (4)

where attr value is the weight of edge between the node n; and the node n;
(equation 3), E(n;) is the set of nodes connected with n;, and d is a damping
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factor that is typically set to 0.85. The score of each node indicates the impor-
tance of its corespondent word. At the end we select the words with the highest
scores as our keywords.

The keyword extraction algorithm is only suitable for extracting keywords
for those covered by the collected poems. Therefore, the two essential problems
— lack of diversity and too short input query — are still challenging.

We employ additional sources of knowledge to generate keywords. The ad-
ditional knowledge sources can include encyclopedias, suggestions of search en-
gines, lexical databases (e.g., WordNet), etc. The key idea of the method is to
find some words that can best describe or interpret k;. In this paper, we used
Arabic lexical databases [28] to expand new keywords from (k;).

The sources consist of selected work by literary critics, as well as writ-
ers immersed in classical literature and renowned for their grandiloquent lan-
guage such as Taha Husain, Muhammad Husain Haikal, Taufiq al-Hakim, Mah-
moud Taimur,al-Manfalauti, Jubran Khalil Jubran, and Amin ar-Raihani (other
sources included newspapers, periodicals, and specialised handbooks).

If the input query is too short to extract enough keywords, we need to expand
the keyword database until the keyword number requirement is satisfied. We
retrieve those satisfying all the following conditions as candidate keywords: (1.)
the word is in the window of [-5, 5] around k;; (2.) the part-of-speech of the
word is an adjective or noun; (3.) the word is covered by the vocabulary of
the poem corpus. Then the candidate words with the highest TextRank score
[32] are selected as the keywords. For example, “the affection” (4!, AlmHb#)

will extend to “beloved” (;_);;;-, maH - buwb), "passion” (;_3\)», hwAka), and "the
love” (s1s)), widaAd).

4.4 Poem Generation Approach

In this section, we introduce the algorithm of our approach step by step, includ-
ing: (1.) the first verse generation with B/F-LM with GRU cell [29], and (2.)
other verses generation with HAS2S model. The framework of our generation
approach is shown in (Fig. 4).

4.4.1 First Verse Generation We employ the B/F-LM with GRU cell
[29] to generate the first verse v; based on the first keyword k;i. The B/F-LM
model consists of a forward and a backward GRU structure. Since we know
the k1 should appear in the verse, we feed the k1 (w1), t € [1,...,T] into the
backward GRU to predict all the previous words [wi1, .., w1—1)]. Then we feed
the [wi1, .., w1¢] to the forward GRU to generate the whole verse [wi1, ..., wir].
4.4.2 Additional Verse Generation After generating the first verse, other
verses of the poem will be generated verse by verse sequentially. Each one is com-
posed by taking all previously generated verses and a keyword as the input into
our HAS2S model. The model consists of two levels: the word-level attention
and the verse-level attention.

4.4.2.1 Word-Level Attention

The word-level attention consists of two parts: the word sequence encoder and
the attention layer.
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Word Encoder : Given a verse v; with words wy, i € [1, ..., M —1], we use
the Bi-GRU [10] to get annotations of words by summarizing information from
both directions for words, and therefore incorporate the contextual information
in the annotation.

The Bi-GRU contains the forward GRU ? which reads the verse v; from w;;

to w;r and the backward GRU ? from w;r to w;1:

Iy = GRU (wyy)  te[L, ... T (5)
hi = GRU (wyy)  te[L, ... T) (6)

We obtain an annotation for a given word w;; by concatenating the forward and

backward hidden state [h;t, h;t], which summarizes the information of the whole
verse centered around w;;.

Attention Layer: Generally, not all words contribute equally to the rep-
resentation of the verse meaning, so we leverage word attention mechanism to
extract such words that are important to the meaning of the verse and aggre-
gate the representation of those informative words to form a verse vector v;.
Specifically,

wit = tanh(Wy,hit + by) (7)

T

exp (ui T u
Qit = T e UT}) (8)
> exp (it Tuy)

Uy = ; aithi (9)

In the above equations i represents i-th verse, ¢ represents t-th word in the
verse, and T is the number of words in a verse. h;; represents the word annotation
of the t-th word in the i-th verse which fed to a one-layer MLP to get u;; as a
hidden representation of h;; which is the concatenation output of the Bi-GRU
layer in our model. W, is a weight matrix of the MLP, and b,, is a bias vector
of the MLP. Then we measure the importance of words through the similarity
between wu;; and a word level context vector u,, which is randomly initialized
and gets a normalized importance weight «;; through a softmax function. a;;
is the weight of the ¢-th word in the i-th verse. Finally, we compute the verse
vector v; as a weighted sum of the word annotations.
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4.4.2.2 Verse-Level Attention

We will generate the new verse v;, i € [2,..., M] and all the preceding verses
[v1, ..., v;—1]. This procedure is a sequence-to-sequence mapping problem with a
slight difference, in that the input consists of two different kinds of sequences: the
keyword and the previously generated verses of the poem. We modify the frame-
work of an attention based Bi-GRU encoder-decoder [40] to support multiple
sequences as input.

Given a keyword k; and the preceding verses [v1, ..., v;—1], we first encode k;
into a sequence of hidden states [l1,1.], and [v1,...,v;—1] into [hy,..., h;—1], with
a Bi-GRU model. Then we integrate [l1, (1] into a vector I. by concatenating the
last forward state and the first backward state of [l1,11], as follows:

o= [l

L

Input
(First Keyword) Ky
The RNN Backward Pass

The RNN Forward PassT—

First Verse

1 Attention

1 Attention

(a) The first verse generation ap-  (b) The additional verses generation approach (HAS2S)

proach (B/F-LM)

Fig. 4: Proposed poem generation model.

We set hg = I, then the sequence of vectors [hy,...,h;—1] represents the
semantics of both the keyword k; and all the previous verses [v1, ..., v;_1].
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For the decoder, we use another Bi-GRU which maintains an internal status
vector s, and for each generation step ¢, where t € [1,...,T], the most probable
output y; is generated based on s;, context vector ¢;, and previously generated
output y;_1. This can be formulated as follows:

yr = arg max P(y |s¢, ce, ys—1)- (10)
Yy

After each prediction, s; is updated by:
se = f(st—1,¢-1, Y1) (11)

f(.) is an activation function of the GRU model and ¢; is recomputed at each
step by alignment model.

5 Experiments

5.1 Dataset

We collected 80,506 verses from 20,106 Arabic poem portions and short length
poems from the Internet in two topics: love and religion. We chose 2,000 verses
for validation, 2,000 verses for testing, and 76,506 verses for training.

5.2 Training

In our experiments, we used two types of embeddings: FastTextsupwora embed-
dings (Section 4.1.1), and the proposed Phonetic CNNgypworda embeddings (Sec-
tion 4.1.2). The FastTextsybwora embedding includes a 300-dimensional vector
and is initialized in the skip-gram fashion [61]. The Phonetic CNNgybword €m-
bedding, on the other hand, includes a 600-dimensional vector constructed by
concatenating the two 300-dimensional vectors of the two models: the CNN-
based subword-level embedding model (Section 4.1.2.1), and the phonetic-level
model (Section 4.1.2.2).

Our poetry generation model consists of two approaches (Section 4.4). For the
first verse generation approach (Section 4.4.1) , we used two-layer GRUs, while
for the additional verses generation approach (Section 4.4.2), we used four-layer
GRUs in both the encoder and decoder.

The proposed poetry generation model was trained on the NVIDIA Tesla
P100 (two GPUs per card) once by using the FastTextsypwora €mbedinngs as
the input and once again by using Phonetic CNNgypwora embeddings. We used
the Adam optimization method [13] with 64 mini-batch size for training. Several
techniques were investigated to train and improve the model, including RNN-
dropout [36], gradient clip, and weight decay.

Our poetry generation model with FastTextsybworqa €mbeddings was con-
verged in 300 epochs with the lowest perplexity value on the validation set,
which is equal approximately to 12 after 27 hours, while our poetry generation
model with Phonetic CNNgupwora €mbeddings was converged in 500 epochs with
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the lowest perplexity value on the validation set, which is equal approximately
to 10 after two days.

To evaluate the performance of our poetry generation model, we implemented
several deep learning models as baselines including: Vanilla RNN [41], LSTM
[27], GRU [62], RNN Encoder-Decoder without attention mechanism, and RNN
Encoder-Decoder with attention mechanism [64]. Table 3 shows the parameters
of the aforementioned models and our poetry generation model.

Table 3: The parameters used for training the poetry generation methods

Models « Droupout Epoch Validation perplexity
Vanilla RNN 0.1 0.2 60 37.59
LSTM 0.01 0.2 100 31.05
GRU 0.01 0.2 100 31.50
RNN Encoder-Decoder (without attention)  0.001 0.3 200 24.81
RNN Encoder-Decoder (attention) 0.001 0.3 250 15.01
Proposed model with FastTextsubworaembeddings 0.1 that drops by fac- 0.3 300 12.01
tor 10 after every 40
epochs
Proposed model with CNNgypworaembeddings 0.1 that drops by a 0.4 500 10.17
factor of 5 after every
70 epochs

5.3 Evaluation

Poem evaluation methods are divided into two types: automatic evaluation,
and human evaluation. Both methods provide important information for evalu-
ation, and they are rarely used alone; combined, they generally provide the best
overview of the efficiency of generated models.

5.3.1 Automatic Evaluation Automatic evaluation allows sense to be
made, to some extent, in the context of pursuing better coherence. It can also
lessen necessary labour and help determine the best configuration.

5.3.1.1 BLEU Scores

We evaluate the poems generated for all the models using BLEU scores [51]. The
scores are used extensively in machine translation where one can compare the
quality of candidate translations from the reference. Recently, these scores have
also been used to evaluate generated poems [25,30,31]. In work, BLEU-1, BLEU-
2, BLEU-3, and BLUE-4 compute the number of unigrams, bigrams, trigrams,



82

and 4-grams respectively produced by our model that occur in the validation
corpus.

The comparison results of the proposed poetry generation model versus other
approaches is presented in Table 4 where the scores are normalized in the range
of [0, 1]. Based on this table, our poetry generation model outperforms other
approaches in term of BLEU-1, BLEU-2, BLEU-3, and BLEU-4. Also, the results
of our poetry generation model show Phonetic CNNgubwora €mbeddings having
an effective impact on the BLEUs.

Table 4: The BLEUs evaluation

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4
Vanilla RNN 0.0211 0.0199 0 0
LSTM 0.1522 0.1124 0.0081 0.0013
GRU 0.1512 0.1139 0.0084 0.0021
RNN Encoder-Decoder (without attention) 0.2513 0.1539 0.0740 0.0510
RNN Encoder-Decoder (attention) 0.3010 0.2110 0.0911 0.0801

Proposed model with FastTextsubwora€mbeddings 0.4122 0.3144 0.204 0.1092

Propsoed model with phonetic CNNgybwora embeddings 0.5301 0.4010 0.3001 0.1500

It is essential to mention we found that our poetry generation model utilizing
both types of embedding performed better when equipped with GRU cells rather
than LSTM cells. The results of the BLEUs evaluation of our poetry generation
model equipped with LSTM cells are shown in Table 5.

Table 5: The BLEUs evaluation of our poetry generation model equipped with
LSTM cells

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4

Proposed model with FastTextsubworaembeddings 0.3511 0.2023 0.1703 0.0981

Propsoed model with phonetic CNNgybwora €embeddings 0.4200 0.3915 0.2901 0.1020




83

5.3.1.2 Hamming Distance

The succession of consonants and vowels produces patterns (meters) which keeps
the balanced music of pieces of a poem. Based on Al-Khalil’s system, there are
sixteen types of meters, and any poem has to follow one of these [39]. Each meter
has the standard numerical pattern which is derived by using the numerical
prosody method (see Section 3.3.1). Sometimes, for the same meter, there is
more than one standard pattern.

Hamming distance is a metric for two equal length strings and a well-known
metric for making spelling corrections through string-to-string comparison [63].
We use the Hamming distance to evaluate a generated poem based on meter
correctness [52], since BLEU [51] cannot be used to judge that.

Hamming distance, in our case, counts the number of flipped bits between
the generated poem’s code and the standard pattern of the meter that this
poem follows. Besides, different lengths will also add to the Hamming distance.
For example, if we generate a verse which follows the tripping meter (<l
AlmtgArb), in which the standard pattern of this meter is coded as follows
11010 11010 11010 11010 for both hemistichs, the generated hemistich 00010
11010 11010 11010 will have a Hamming distance of two, because the first two
syllables in the first foot have been changed, and 111010 11010 11010 11010 will
have a Hamming distance of one, because it has length 21.

To compare between the proposed model with FastTextsypwora embeddings
and the proposed model with Phonetic CNNgupwora €mbeddings in term of the
ability to generate a poem which follows a specific meter correctly, we generated
20 three-verses poems. To do that, we used BASRAH tool [38].

Generally, the proposed model with FastTextsupword €mbeddings is not able
to generate a poem that follows the correct meter. Here, BASRAH identified
85% of the generated poems as "unknown meter”, since the codes of generated
poems do not belong to any standard pattern of meters. Another 15% of the
generated poems (three poems) were classified as following the long meter ( J; skl
Al-AlTwyl ) and have the Hamming distance between three to five, in which the
length of the standard pattern of their meters is 47.

BASRAH successfully identifies the meter of the poems generated by the
proposed model with Phonetic CNNgupwora embeddings. 40% of the generated
poems (eight poems) were classified as following the long meter ( J; sk)l, Al-AlTwyl
) and have the Hamming distance between zero to three, in which the length of
the standard pattern of their meters is 47. 25% of the generated poems (five po-
ems) were classified as following the lopped meter (.aall, AlmgtDb) and have
the Hamming distance between zero to one, in which the length of the standard
pattern of their meters is 42. 35% of the generated poems — seven poems — were
classified as following the tripping meter (—,lzll, AlmtqArb) and have the Ham-
ming distance between zero to two, in which the length of the standard pattern
of their meters is 40.

5.3.2 Human Evaluation Poetry is an art form, and evaluating art as
“good” or “bad” is a subjective matter. Finding accurate, objective evaluation
of the poem’s generation systems is quite hard. Lately, many pieces of research
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have illustrated the incompetence of the automatic evaluation metrics, such as
METEOR [53], or BLEU [51], to be an alternative to human evaluation. There-
fore, automatic evaluators verify effectiveness by computing the correlation with
human evaluation based on the four main criteria [30,31]: Poeticness (generated
poems must follow the rhyme and the tone requirements), Fluency (generated
poems must read smoothly and fluently), Coherence (generated poems must
obey grammatical rules and be readable across lines), and Meaning (generated
poems must have a meaning and artistic conception).

We randomly chose fifteen generated poems with four verses and another
fifteen with three verses. Evaluators assessed the score of each criterion, ranging
from one to five (five is the highest rank). We obtain the total score for each
criteria via averaging the scores from all the evaluators and the samples.

The results of the human evaluation are shown in Table 6. Based on this
table, our poetry generation model obtained higher scores in terms of Coherence,
Fluency, Meaning, and Poeticness compared with the other approaches. The
poems generated by Vanilla RNN [11] are poor-quality poems.

Although the poems generated by both LSTM [27] and GRU [62] are quite
better than the poems generated by Vanilla RNN [41], they appear to be gram-
matically poor, and there is no strong association between words in each verse.
The poems generated by RNN Encoder-Decoder with attention mechanism[64],
on the other hand, have more variation and more realistic-looking textual phrases
compared to the previous models, and are grammatically correct. However, there
are instances where adjacent words are nonsensical. For example,

The sins is forgiven in the month of Ramadan, And let us weep from the injustice
of the beloved.

Our poetry generation model with FastTextsubwora €mbeddings has proven
effective in generating Arabic poems, and many normal evaluators see that there
is no significant gap between the poems generated by this model and the poems
generated by our poetry generation model with Phonetic CNNgubwora €mbed-
dings. However, expert evaluators find that using the generated model with
extended phonetic and semantic embeddings leads to significant improvement
in intractable criteria, e.g., Poeticness .

5.4 Generation Example

Table 7 shows the religious poem — its theme is pilgrims longing for Mecca
— selected from the blind test of the proposed poetry generation model with
FastTextsupwora €mbeddings. Although, this model has succeeded to generate
the poem with semantically relevant verses, as shown in Table 7, the poem does
not follow specific rhythm correctly. To consider any verse as rhymed, it should
belong to one of the sixteen meters of the poetry rhythms. If not, this poem is
expressed as a deviate.

Tabel 8 shows the flirting poem which follows the tripping meter (<l
AlmtqArb) selected from the blind test of the proposed poetry generation model
with Phonetic CNNgubwora €mbeddings. The quality of the generated poem in
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Table 6: Evaluation standards in human judgement

Models Fluency Coherance Meaning Poeticness
Vanilla 0.1 0.8 0.7 0
LSTM 0.3 0.9 0.8 0.1
GRU 0.3 1 1 0.2
RNN Encoder-Decoder (without attention) 2 1.5 24 0.3
RNN Encoder-Decoder (attention) 2.3 2.5 2.7 0.4
Proposed model with FastTextsubwora Embeddings 2.1 3.2 3.5 0.9
Proposed model with Phonetic CNNgybwora Embeddings 2.7 3.3 3.6 2.5

Tabel 8 is somehow comparable to human poets, in that the poem follows specific
rhythm correctly.

Based on the difference in quality between the generated poems using the pro-
posed poetry generation model with Phonetic CNNgypworda €mbeddings, and the
generated poems using the proposed poetry generation model with FastTextsubword
embeddings, we succeeded to show that using the extended phonetic and seman-
tic embeddings — Phonetic CNNg,pbword €mbeddings — plays a key role to improve
the overall performance of our poetry generation model.

6 Conclusion and Future Work

It is worth noting that generating Arabic poetry automatically, with the help
of computer programs, is very challenging compared with other languages since
Arabic poetry has cultural and historical dimensions added to the art form. In
this paper, we proposed a more robust model that can generate Arabic rhyth-
mic poems with semantically relevant verses. It has been shown that the pro-
posed embeddings (Phonetic CNNgypwora €mbeddings) have an effective impact
on the generation model compared to FastTextsubworda €mbeddings. We have also
demonstrated that by using lexical databases as an extra source of knowledge,
our approach can expand the input query — if it is too short — into enough appro-
priate keywords for poem generation. The proposed poetry generation model ob-
tained the highest BLEU scores over the state of the arts. The human evaluation
also shows that the model produces high-quality poems in terms of Coherence,
Fluency, Meaning, and Poeticness. There still exists a gap between our model
and human poets, which indicates that there is much left to do in the future.
In further research, we plan to design more effective addressing functions and
incorporate external knowledge to reinforce the memory.
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Table 7: Example of a poem composed by the proposed poetry generation model
with the phonetic FastTextgupword embeddings

Verses

Dictation
form

Numerical
prosody form

Bl gE EARC Lyl B eks
To my beloved Arafat Allah’s messenger’b: land, peace be upon the pilgrims of
Allah’s house. , . L ..

Ay gl B s LS el Gt 5l (2

A[:—Hijaz land, missing you is What attracts me to your people, oh Allah’s
messenger, here is the light that brought us.

Wl b 5o G obs &l sl S G e

Gabriel, peace /upon you in Arafat, the purest land of Allah.

Aly arafAti Ar - Da raswlu liAlhi muHib ihi salAmu All ahi alay Huj Aji
bay - ti All ahi

Ar - Du AlHijAzi yasudny a AlHanyni lsAkyn-hA  hunA Aln wra qad -
Aatay - nA yArswl - liAlhi

jib - rylu AlAmyna alay - ka salAmu All ahi fay arafAti fy bilAdi Tuh - rihA
All ahu

211321111132233 323 22323
22111321111332 31133 221323
31133221323 2132232233

Table 8: Example of a poem composed by the proposed poetry generation model
with the phonetic CNNg,pbwora embeddings

Verses

Dictation
form

Numerical
prosody form

I never wanted a day to pass by,not in my lifetime, not in my eternity
B o s )

Why would a beloved angel go away, when my face is pale and my body is
skinny ) . )

NS P TP G S M

z&I{d on /a d;aurk,/so/rrowful /day, all m/isfortunes dawn on me

wamaA - kun-tu Aab- iy liyiw-mi furaA - qaA& wilaA - fiy -
HayaA - tiy - walaA - fay - mamaA - ti

wlkn biy - wm saw - Aadi Haziy - ni  tdAoca AlblAyA lfqodi AlHabiyobi
ImAJA ya iy -bu m -laAkii Habiy - bii wajis - diy © naHiy - 10 biwaj - hi
kagiy - bi

32323232 32323232

32313232 32323232
32323232 32323232
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