
International Journal of Transdisciplinary AI
Vol. 2, No. 1 (2020) 1-25
© KS Press, Institute for Semantic Computing Foundation
DOI: 10.35708/TAI1869-126247

Generating Metrically Accurate Homeric Poetry with
Recurrent Neural Networks

Annie K. Lamar1 and America Chambers2

1 Department of Classics, Stanford University, Stanford, CA, USA
kalamar@stanford.edu

2 Department of Computer Science, University of Puget Sound, Tacoma, WA, USA
alchambers@pugetsound.edu

Received (11/15/2019)
Revised (05/09/2020)
Accepted (06/20/2020)

Abstract We investigate the generation of metrically accurate Homeric
poetry using recurrent neural networks (RNN). We assess two models:
a basic encoder-decoder RNN and the hierarchical recurrent encoder-
decoder model (HRED). We assess the quality of the generated lines of
poetry using quantitative metrical analysis and expert evaluation. This
evaluation reveals that while the basic encoder-decoder is able to capture
complex poetic meter, it under performs in terms of semantic coherence.
The HRED model, however, produces more semantically coherent lines
of poetry but is unable to capture the meter. Our research highlights the
importance of expert evaluation and suggests that future research should
focus on encoder-decoder models that balance various types of input –
both immediate and long-range.

Keywords: poetry generation; neural network; recurrent neural networks; po-
etic meter; ancient languages

1 Introduction
Homeric poetry is poetry traditionally ascribed to the bard Homer and includes
the Iliad and the Odyssey. Homeric poetry plays a central role in the field of
Classics and strongly influences the study and understanding of Classical liter-
ature, mythology, and ancient culture, values, and militarism. In this paper, we
investigate the use of recurrent neural networks for generating metrically accu-
rate Homeric poetry – providing a new pathway for Classicists to analyze the
metrical and semantic considerations made in the production of such epic oral
poetry.

2 A. K. Lamar et al.

Generating metrically accurate Homeric poetry is a creative and challenging
task. Homeric poetry is written in a strict and complex meter known as dactylic
hexameter. Most poetry generation models focus either on syllabic-based meters
or simple iambic meters. In contrast to such poetic meters, lines of dactylic hex-
ameter contain varying numbers of syllables and words. An additional challenge
is the relatively small amount of Homeric poetry available. The entirety of the
Homeric canon is about 27,000 lines.

In the next section, we provide a more detailed description of dactylic hex-
ameter. We also discuss the long history of analysis that Homeric poetry has
enjoyed. We then provide a description of our data sets and the recurrent neu-
ral network architectures that we use. Finally, we present the results of having
expert Classicists evaluate the poetry generated by our system.

2 Homeric Poetry
2.1 Homer and Oral Poetry

The Iliad and the Odyssey are two epic poems traditionally ascribed to the
bard Homer and dated to the eighth century BCE. The Iliad tells the story of
the Trojan War and the Odyssey recounts the hero Odysseus’ long homecoming
following the war. Homeric poetry is written in a dialect of ancient Greek called
Homeric Greek.

Although we refer to Homer as the author of these texts for convenience,
the two works are most likely the product of an extended oral tradition rather
than a single poet named Homer. That is, the two works are likely the result of
many (unnamed) poets who memorized, performed, and innovated on a set of
standard poems over a long period of time.

2.2 Homeric Meter

Homeric poetry is written in dactylic hexameter, a metrical system in which
each line consists of six metrical feet. A single foot can consist of one of three
options: a dactyl, a spondee, or an anceps. A dactyl is a foot composed of one
long and two short syllables. A spondee is composed of two long syllables. An
anceps is composed of one long syllable and one other syllable of either type
(long or short). Each line of dactylic hexameter must end with an anceps.

Figure 1 shows the first line of Homer’s Iliad with the dactylic hexameter
marked above. The feet are separated by a vertical bar. A long dash indicates a
long syllable, while ’u’ indicates a short syllable. In addition, the long syllables
in the actual text are bolded. The pronunciation and translation are also shown
in English underneath.

Generating Homeric Poetry 3

Figure 1: First line of the Iliad with metrical markings.

3 Related Work
3.1 Related Work in Antiquity

Poets have been attempting to imitate Homeric poetry in its style, content, and
meter since ancient times. Plato writes in the Republic that “praisers of Homer...
say that this poet educated Greece, and that in the management and education
of human affairs it is worthwhile to take him up for study and for living, by ar-
ranging one’s whole life according to this poet” [6,27]. Tragic poets contemporary
to Plato were indeed considerably influenced by Homeric epic. Homeric motifs
and style appear in the tragedies and satyric dramas of Aeschylus, Euripides and
Sophocles [28].

Roman poets, including Livius Andronicus, Naevius, Ennius, and Virgil, like-
wise imitated Homeric epic. The structure of Virgil’s Aeneid demonstrates this
point: the first half of the Virgilian epic reflects the structure of Homer’s Odyssey
while the second half reflects that of the Iliad [8]. Homeric poetry influences even
(relatively) modern writers; although providing an exhaustive list is beyond the
scope of this paper, a few representative examples are James Joyce’s Ulysses,
Margaret Atwood’s The Penelopiad, William Faulkner’s As I Lay Dying, and
Audrey Niffenegger’s The Time Traveler’s Wife.

In addition, scholars have been attempting to understand and quantify Home-
ric poetry for millenia. Greek grammatical scholarship from as early as the sixth
century BCE has been focused on the reproduction of grammar and syntax
of Homeric texts; The sixth century BCE scholar Theagenes of Rhegium, her-
alded as the first grammarian, is noted for his defense of Homeric grammar and
mythology [23]. A couple centuries later, Plato devotes much of his Republic to
understanding the nature of poetry and uses Homer as a model. In the modern
era, we can look to Nietzsche and Freud for philosophical applications of Homer,
and Butler and Coleridge for humanistic interpretations of the texts. Homeric
texts were read and preserved by a wide range of Mediterranean peoples, from
the coast of modern-day Spain, to northern Africa, and into the Near East. Be-
cause the transmission of Homeric texts has been considered critical by such a
range of cultures and eras, clearly the text communicates universal ideas about
the nature of humanity. For this reason, it is worthwhile to apply the tools of
modernity to continue attempts to understand and reproduce Homeric poetry.

4 A. K. Lamar et al.

3.2 Poetry Generation in Modern Times

In the early twenty-first century most poetry generation was rule-based or sta-
tistical in nature.

Oliveira et al. created PoeTryMe, a platform for automatic poetry generation
that used grammar rules and templates [22]. Tosa et al. created a rule-based
haiku generation system that used arbitrary phrases chosen by a user to produce
a haiku with the correct number of syllables on each line [20]. Tosa et al. improved
on this rule-based system by incorporating more Japanese cultural characteristics
into the generated haikus [21].

Jiang et al. used statistical methods and the principles of machine translation
to generate Chinese couplets [13]. He et al. also generated Chinese Classical po-
ems using statistical machine translation models where to generate each output
sentence, a model specifically trained for an input sentence is used for genera-
tion [10].

Other approaches to poetry generation include genetic algorithms [18], [3],
[25] and the application of text summarization techniques [26].

Since 2014, research on automatic poetry generation has been dominated
by neural methods. Zhang et al. produced joint character-level recurrent neural
networks to better capture poetic content and form [31]. Wang et al. used a
bidirectional long short-term memory (LSTM) model to generate Chinese po-
etry [24]. Ghazvininejad et al. used a dictionary to impose rhyme constraints
on poetry generated with a recurrent neural network [16]. In contrast, Lau et
al. learned rhyme patterns automatically and proposed a pipeline of language,
rhyme, and meter models to generate Shakespearean poetry [12]. Of particular
relevance to this paper is Lau et al.’s findings that a vanilla LSTM is able to cap-
ture English iambic meter implicitly. In contrast to [12], we attempt to generate
dactylic hexameter, a poetic meter more complex than iambic meters.

Our work in this paper expands upon our previous investigation of the use of
encoder-decoder RNNs for generating metrically accurate Homeric poetry [15].
In addition to expanding on the experimental details and results, we also ex-
periment with a new model (hierarchical recurrent encoder decoder) that is
specifically designed for generating text that is semantically coherent.

4 Datasets
The entirety of the available Homeric canon contains 27,342 lines from Homer’s
Iliad and Homer’s Odyssey. The text from both works is taken from Oxford’s
1920 edition of the Homeri Operi [2].

Our training set consists of input output pairs where the input is one line
of the poem and the output is the next line of the poem (see Figure 2). For
example, given the first line of the Iliad as input, the model should generate the
second line of the Iliad as output, so on and so forth.

Generating Homeric Poetry 5

Figure 2: The training set

We generate 30 test sets by following the procedure outlined below 30 times:

– Randomly select a passage of 5 lines from the training set.
– For each passage:
• Randomly select one line from the passage.
• Remove the selected line (and its corresponding output) from the train-
ing set and place it in the test set.

• Remove the preceding line (and its corresponding output) from the train-
ing set.

• All remaining lines remain in the training set.

Figure 3: Procedure to generate test sets

This procedure is shown in Figure 3. Note that while the selected line (the
shaded row in Figure 3) is added to the test set, the preceding line is not included
in either the test set or the training set. The preceding line is removed from the
training set so that the selected line (i.e. line 4) does not appear in the training
set in any form: neither as an input nor as an output.

Once we have constructed our training and test sets, we further sub-divide
the training set to create a validation set. The validation set was constructed by
taking the last 10 lines from every 100 lines, resulting in a validation set that
was approximately 10% the size of the training set and the reflected the diversity
found in the training set.

6 A. K. Lamar et al.

5 Model Architecture
In this section, we provide a brief overview of the architecture of the recurrent
neural network (RNN) models used in this paper.

5.1 Encoder-Decoder RNNs

An encoder-decoder RNN [14] is a neural network architecture that maps se-
quences to sequences. In this case, given a sequence of words (i.e. one line in a
poem) the model generates an output sequence of words (i.e. the next line in the
poem).

An encoder-decoder RNN works in two stages. The first stage involves map-
ping the input sequence to a high-dimensional space. This high-dimensional
space represents a mathematical encoding of the meaning of the sentence that
is language independent. The second stage then maps from points in this high-
dimensional space back to the space of sequences.

Let x = [x1 x2...xn] be the words in a given line of poetry. The encoder RNN
incrementally builds an encoding h of the input sentence word-by-word using
the following algorithm:

// Build the partial encodings
for t = 1 to n do
ht = f(ht−1, xt)

end for

//Build the overall encoding
h = g(h1,h2, . . . ,hn)

where h0 is typically a vector of all zeros. The partial encodings ht capture
the meaning of the sentence up to the given word. The final encoding h is
then a function of all of the partial encodings with g(·) commonly chosen to be
g(h1,h2, ...,hn) = hn. That is, hn is assumed to be a sufficient encoding of the
entire sentence.

Two common choices for the function f(·) are the long short-term memory
(LSTM) model [7] and the gated recurrent unit (GRU) [14]. Both functions keep
track of an internal state as a form of short-term memory. At each step, the
new state is derived from the previous one in a process of forgetting and then
updating in response to the new word xt.

Given the final encoding of the input sentence (which we will now denote
as hx), the next line of the poem y = [y1 y2 ...] is generated using another
RNN (the decoder). At each step, a word yt is sampled conditioned on the
previously generated word yt−1, the partial encoding ht−1 of the decoder, and
the encoding of the input sentence hx. Note that in this context, the partial
encoding ht−1 serves as a summary of the meaning of the previously generated
words. Algorithmically, we have

while yt−1 does not equal EOS do

Generating Homeric Poetry 7

Compute p(yt|yt−1,ht−1,hx)
Sample yt ∼ p(yt|yt−1,ht−1,hx)

end while

where EOS is a specially designated end-of-sentence symbol. The distribution
p(yt|yt−1,ht−1,hx) is, again, commonly chosen to be an LSTM or GRU func-
tion whose output is passed through the softmax function to produce a valid
probability distribution over the words in the vocabulary.

The first model we use in this paper is an encoder-decoder RNN with two
additional augmentations. First, we use a bidirectional encoding – i.e., partial
encodings are computed from the beginning of the sentence forward and from
the end of the sentence backwards. These two encodings are then concatenated
together to produce the final encoding hx for the input sentence. We also use an
attention mechanism where the generation of each word yt is now conditioned
on a weighted sum of all of the partial encodings of x rather than conditioning
on hn alone. A bidirectional encoding and attention mechanism have both been
shown to significantly improve performance regardless of the natural-language
application [4, 17,29].

5.2 Hierarchical Recurrent Encoder-Decoder

The model described above has no explicit mechanism for generating seman-
tically cohesive lines of text which is important when generating poetry. For
this reason, we also experiment with a hierarchical recurrent encoder-decoder
(HRED) model [9] which has an extra encoding step designed to keep track of
the current semantic state of a dialogue (or poem).

The encoder RNN operates as normal – given an input x, it produces an
encoding hx of the input sentence. HRED also employs a bidirectional encoding
but uses the GRU function instead of LSTM.

This encoding hx is then passed as input to a second encoder RNN called the
context RNN. The context RNN aggregates the encodings hx of each successive
input sentence. The context RNN acts as a form of global memory, summarizing
the semantic content of the dialogue (or poem) up to the current point in time.

The decoder RNN then generates each word yt conditioned on the previously
generated word yt−1, the partial encoding ht−1 of the decoder, and the encoding
of the context RNN. That is,

yt ∼ p(yt|yt−1,ht−1,hc)

where hc is the encoding produced by the context RNN. In this way, each
generated word is conditioned on all of the previous input sentences up to that
point in time which provides a form of semantic coherence.

5.3 Word Embeddings

Finally, instead of representing each word in the vocabulary as a binary one-
hot vector (i.e., a vector of all zeros whose length is the size of the vocabulary

8 A. K. Lamar et al.

with a single non-zero entry indicating the given word), we learn GloVe word
embeddings [11].

A GloVe word embedding is a mapping from words in the vocabulary to a
high-dimensional vector space. The mapping is learned from the co-occurrence
of words in the poem. The learned word vectors provide a much richer represen-
tation than binary one-hot vectors – e.g., the Euclidean distance between two
word vectors provides a measure of the semantic similarity of the words.

Our vocabulary is the set of all words found in the Iliad and the Odyssey.
We learn GloVe word embeddings of dimension 50 from the text of both poems.

6 Experiments
For our first model, we use the OpenNMT-py library [5]. The encoder RNN is
a 2-layer bidirectional LSTM with encoding dimension of 200 (i.e. the forward
and backward encoding each have dimension 100). The decoder RNN is also a
2-layer bidirectional LSTM but with dimension 500. We use an Adam optimizer
with dropout probability of 0.3 and an initial learning rate of 0.01. The model
was trained for 64,000 iterations at which point the accuracy on the validation
set stopped improving.

For our second model, we use the code provided by the author [1]. We used
an encoder with dimension of 100 (i.e. the forward and backward encoding each
have dimension 50). The context RNN has encoding dimension 500. The model
uses an Adam optimizer with initial learning rate of 0.002. The model was trained
for 25,000 iterations and the accuracy was evaluated on the validity set every
2,500 iterations.

Once trained, we then applied both models to each of the 30 lines in the test
set. For the first model, the input is the selected line of poetry (e.g. line 4 as
shown in Figure 3) from which the model generates a new line of poetry (line
5). For the second model, the input is the previous two lines of poetry (e.g. line
3 and line 4) from which the model generates a new line of poetry (line 5). In
this case, the previous two lines of poetry form a short context that is used to
predict the next line in the poem. (Note that in this case we remove the previous
two lines of poetry from the training set).

We assess the first model in two ways: (1) a quantitative metrical evaluation,
and (2) an overall evaluation by Classicists to determine how well the generated
lines fit into their original passages. We then provide a qualitative analysis of the
lines generated by the second model and discuss the strengths and weaknesses
of the model.

6.1 Parameter Experimentation
The first model, the basic encoder-decoder RNN, provided many options for
tuning the model both at training time and at generation time. At training
time, we experimented with two different functions for generating probabilities
over the target vocabulary. At generation time, we experimented with different
ways of sampling words from the vocabulary and different ways of controlling
the length of the generated line of poetry. These parameters are explained in
greater detail below.

Generating Homeric Poetry 9

Generator Functions We experimented with both a softmax and sparsemax
function to generate probabilities over the target vocabulary at training time.
The softmax function maps the output of the decoding process, a real-valued
vector, to a normalized probability distribution over the vocabulary. In this
case, all words in the vocabulary have non-zero probability of being generated.
The sparsemax function [19] projects the output of the decoding process, again
a real-valued vector, onto the K-dimensional probability simplex (where K is
the size of the vocabulary). The authors note that this projection is likely to fall
near the border of the simplex producing a probability distribution where many
words have zero probability. Ideally, the sparsemax function would concentrate
probability mass on the likeliest next words in the poem thereby improving the
overall metrical and semantic quality of the generated lines.

Random Sampling At generation time, the decoder generates each word by sam-
pling from a probability distribution defined over the vocabulary. We experi-
mented with 3 different schemes for sampling from this distribution: sampling
from among the k words with highest probability (for k = 2, 5, 10) or sampling
from the full probability distribution. Sampling from among the k words with
highest probability reduces the chance of randomly sampling a low-probability
word.

Length Penalty Finally, we experimented with three options for controlling the
length of the generated line of poetry: (1) no length penalty, (2) average length
penalty, and (3) the length penalty described by [30]. The average length penalty
divides the log probability of the words in the generated output by the number
of words, thereby penalizing longer sentences. Although we cannot force the
model to generate lines consisting of exactly six metrical feet, the length of the
generated line of poetry (i.e. the number of words) is correlated with the metrical
accuracy.

6.2 Results of Parameter Experimentation
To determine which parameters resulted in the best output, we generated five
lines of Homeric poetry using each combination of parameters (detailed in the
section above). The following metrics were used to evaluate the quality and
accuracy of the meter of the generated lines:

1. The number of lines (out of 5) that had six total feet.
2. The number of lines (out of 5) that had an anceps.
3. The number of lines (out of 5) that were in perfect dactylic hexameter.
4. The percentage of feet in all 5 lines that were scannable (i.e. a correct dactyl,

spondee, or anceps).

Table 1 shows the results of our parameter experiments. A random sampling
value of k = −1 indicates sampling from the full distribution. All models were
trained with an Adam optimizer and a starting learning rate of 0.01.

Overall, the softmax function outperforms the sparsemax function, perform-
ing better in terms of percent of correct feet and the number of perfect lines.

10 A. K. Lamar et al.

Interestingly, none of the other parameters showed any impact on the perfor-
mance of the model. As such, we chose the most general parameter settings.

Our final model uses the softmax function with no length penalty and random
sampling from the full distribution. We trained this model for 64,000 steps.
Training was stopped when the validation accuracy stopped improving. The
final model accuracy on the validity set was 97.77%, with perplexity of 1.08 and
cross-entropy loss of 0.08. This model was used to produce the results for the
remainder of the paper.

Model Len. Penal. Rand. Samp. Lines with 6 Feet Lines with Ancipites % Feet Correct Perfect Lines

Softmax

None

-1 4 5 93.5 3
2 4 4 90.6 2
5 2 5 100 2
10 3 5 89.2 2

Wu

-1 4 5 93.5 3
2 4 4 90.6 2
5 2 5 100 2
10 3 5 89.2 2

Avg

-1 4 5 93.5 3
2 4 4 90.6 2
5 2 5 100 2
10 3 5 89.2 2

Sparsemax

None

-1 2 5 88.9 1
2 4 5 93.1 3
5 2 5 88.9 1
10 2 5 88.9 1

Wu

-1 2 5 88.9 1
2 4 5 93.1 3
5 2 5 88.9 1
10 2 5 88.9 1

Avg

-1 2 5 88.9 1
2 4 5 93.1 3
5 2 5 88.9 1
10 2 5 88.9 1

Table 1: Results of parameter experimentation.

Generating Homeric Poetry 11

7 Results
In this section, we describe the results of both models. For the basic encoder-
decoder RNN, we present (1) a quantitative metrical evaluation, and (2) an
overall evaluation by Classicists to determine how well the generated lines fit into
their original passages. For the second HRED model, we provide a qualitative
analysis by the author of this paper (a Classicist) and discuss the strengths and
weaknesses of the model.

7.1 Metrical Evaluation

All 30 machine-generated lines in the test set are presented in the Appendix
along with the number of feet in the line, of those feet how many are correct
(i.e. correct dactyls, spondees, or anceps), whether the line ends in an anceps,
and whether the line is in perfect dactylic hexameter.

The 30 machine-generated lines ranged from a minimum of 5 feet to a max-
imum of 8 feet. All of the generated lines ended in an anceps. Of the total feet
in the 30 generated lines, 93% were correct dactyls, spondees, or anceps. Of the
total generated lines, 46% were in perfect dactylic hexameter.

Of the the 53% of lines which contained a metrical error, approximately half
(56%) contained 6 feet but had at least one foot that was unscannable and the
other half (44%) did not contain 6 feet.

Of the 7% of feet that were metrically incorrect, 67% were incorrect because
the syllables could not scan correctly. For example, consider the second foot of
line 10 in Table 4, which is the word ἵνα. The word ἵναmay only be scanned as two
short syllables. However, two short syllables cannot form a proper foot in dactylic
hexameter. The remaining 33% of the metrically incorrect feet were incorrect
because they contained only one syllable; that is, the line scanned properly
except for one extra syllable. For example, consider line eight in Table 4, which
scans spondee-dactyl-spondee-dactyl-incorrect-anceps. The penultimate foot of
line eight is the word ὡς, a one-syllable word that cannot form an entire foot.

Metrical analysis suggests that the presence of spondees increases the chance
that a line will be metrically inaccurate. If we do not consider anceps, 81% of
the feet within the metrically correct lines were dactyls, and only 19% were
spondees. Conversely, only 53% of the feet within the metrically incorrect lines
were dactyls. We also noted that most metrical errors occurred towards the
middle of the line. The fourth foot was most likely to contain a metrical error.

An example of a generated line with perfect meter is:
ῥηιδίως δαναῶν ἐπιβαινέμεν ἀλλὰ καὶ αυτω

which is composed of a dactyl, dactyl, dactyl, dactyl, dactyl, anceps. Notably,
this line demonstrates a phenomenon known as epic correption between the last
two feet. Epic correption is when a syllable that is typically a long syllable
becomes short because the next word begins with a vowel. In this example, epic
correption occurs between καὶ and αυτω. This line can be translated as "But
the son of Danaoi easily having climbed up, even he..." This is typical syntax for
ancient Greek poetry, which often uses the structure of "But X having happened,
Y..." where the action is finished on the next line.

12 A. K. Lamar et al.

An example of a generated line with poor meter is
ὀφθαλμοῖσι τε κατείρυσται καὶ ἐπαρτέες εἰσὶν ἑταῖροι

which begins with a spondee, then contains a dactyl, and after the second foot
becomes unscannable. The translation is also poor, but can be roughly rendered
as "both the eyes provoked3 and enemies are equipped."

7.2 Evaluation by Classicists

To evaluate how well the generated lines fit into the original passages from
which they were chosen, we created a survey that displayed the 30 5-line pas-
sages of Homeric poetry. Evaluators were instructed that each passage contained
at most one machine-generated line of poetry (i.e. a passage may not contain
any machine-generated lines). The survey contained 27 passages with a machine-
generated line and 3 passages with no machine-generated line. For each of the
30 passages, evaluators were asked to identify which line (if any) was machine
generated. If they identified a line as machine generated, they were further asked
to mark why. There were a total of 10 evaluators all of whom are Classics grad-
uate students. Evaluators were paid $10.00 each for evaluating all 30 passages.
An example of a passage from the survey is shown in Figure 4.

We first present the results on a passage level. On the passage level, there
are 300 total evaluation instances (10 evaluators and 30 passages). In the contin-
gency table shown in Table 2, a true positive occurs when an evaluator tags any
line in a passage as machine-generated and that passage contained a machine-
generated line. A true positive does not require that an evaluator selected the
correct line as machine generated. A true negative occurs when an evaluator cor-
rectly states that a passage contains no machine-generated lines. A false positive
occurs when an evaluator tags a line in a passage as machine generated, but that
passage contains no machine-generated lines. A false negative occurs when an
evaluator states a passage contains no machine-generated lines, but the passage
does contain a machine-generated line.
3 "Provoked" is conjugated incorrectly and eyes cannot be the subject of the verb.

Generating Homeric Poetry 13

Figure 4: A sample passage from the survey

Tagged As MG Tagged No MG

Contained MG 206 64

Not Contain MG 11 16
Table 2: Contingency table for passage evaluation

75% of the time evaluators correctly determined if a passage contained a
machine-generated line or not 4. The precision and recall were 94% and 76%
respectively with an F1 score for passage-level evaluation of 0.836. Overall, when
an evaluator identified a passage as containing a machine-generated line, they
4 Although they did not necessarily correctly identify which line was machine gener-
ated.

14 A. K. Lamar et al.

were almost always correct. However, such passages were identified only 76% of
the time.

We now present our results at the line level. We consider only results for
the 27 passages which contained a machine-generated line. At the line level,
there are 1,350 total instances (10 evaluators · 27 passages · 5 lines). Note that
these instances are not independent because evaluators were only able to choose
a maximum of 1 in every 5 lines. In the contingency table shown in Table 3,
a true positive occurs when an evaluator tagged a line as machine-generated
and the line was machine generated. A true negative occurs when an evaluator
indicated a line was not machine-generated (i.e. they did not mark the line in the
survey) and the line was not machine generated. A false positive occurs when
an evaluator tagged a line as machine generated and it was not. A false negative
occurs when evaluators did not mark a line as machine generated, but the line
was machine generated.

Tagged As MG Tagged No MG

MG Line 171 99

Not MG Line 35 1045
Table 3: Contingency table for line evaluation

90% of the time evaluators correctly identified a line as machine generated
or not. Note that randomly guessing one of the six options (either choosing one
of the five lines or "No machine-generated line") would result in an accuracy of
16.67%. The precision and recall were 63% and 83% respectively with an F1
score for line-level evaluation of 0.71.

Evaluators were also asked to mark the reason why they thought a line was
machine generated. They were given five options: (1) Semantics: This line doesn’t
make sense, (2) Syntax: This word order doesn’t seem like Homer, (3) Meter:
This line is not in dactylic hexameter, (4) I recognize this section of Homer’s
text, and (5) Other. Evaluators were allowed to select more than one option. If
the evaluator marked "Other," they were asked to type in their own response.
Figure 5 below shows the reasons that evaluators marked a line as machine-
generated when the line was in fact machine-generated. A majority of the time,
evaluators correctly marked a line as machine-generated because semantically
the line did not make sense.

Generating Homeric Poetry 15

Figure 5: Reasons evaluators selected for why they believed a line was machine-
generated.

When evaluators marked their reasoning as "Other," they often presented
reasoning related to context – i.e. how the line "fit" with the surrounding lines
of poetry. For example, one evaluator writes "[s]emantically, it doesn’t seem to
necessarily fit with the other lines of text. It may be true Homer, while one of the
surrounding lines is machine-generated." Other evaluators write "just guessing
but it doesn’t seem to fit," "The line doesn’t make sense in this context," "Doesn’t
fit with rest of passage," "Doesn’t seem to fit," and "Doesn’t fit with rest of text."
Another evaluator notes a machine-generated line "seems to interrupt meaning
between lines 3 and 5."

Another common thread in "Other" responses is evaluators’ insider knowledge
of Homeric poetry being used to identify machine-generated lines even when
those lines were semantically and metrically sound. For example, one evaluator
notes that "[l]ines ending in glaukopis Athene tend to be self-contained units
where Athena performs the action of a verb." Here, the student was only able
to identify the line as machine-generated because they were aware of how the
Greek formula glaukopis Athene is used in Homeric poetry. Another evaluator
writes "almost never see ’pallas’ by itself, normally is ’pallas athene.’ In this case,
the evaluator was able to tell the line was machine-generated because of their
familiarity with the Homeric formula Pallas Athene.

Other times, evaluators were able to identify machine-generated lines because
of their knowledge about Homeric characters roles within texts. For example,
consider the lines below:
αὐτὰρ ἐπεὶ δὴ δούρατ ἀλεύαντο μνηστήρων

ἷξε τόθ ἔσαν οἶκον δὲ καλυψώ δῖα θεάων

16 A. K. Lamar et al.

But when they had avoided the spears of the suitors,
He came then to the house of Calypso heavenly among
goddesses.

The first line is true Homeric poetry from Homer’s Odyssey. The second
line is machine-generated. In the Odyssey, the suitors (μνηστήρων) are a group
of characters who never come in contact with the character Calypso (καλυψώ).
Evaluators noticed this. They wrote reasons such as "Calypso should not be
involved in this context with suitors" and "Calypso and the suitors? I’d watch
that show, but nope!"

The same type of error occurs in a second passage involving the characters
Penelope and Hector. Penelope is a character who remains on the island of Ithaca
for the duration of the storyline told by Homer’s Iliad and Odyssey. Hector is
a character who remains at Troy during most of the Iliad and is killed part-
way through the epic. These two characters clearly could not have ever occupied
the same location at any point in the Homeric canon. However, a line including
Hector is generated following a line about Penelope. In the below lines, the first
three are Homeric poetry while the last line is machine-generated:

θηρσὶ καὶ οἰωνοῖσιν ἕλωρ γένετ οὐδέ ἑ μήτηρ

οὐδ ἄλοχος πολύδωρος ἐχέφρων πηνελόπεια

ἕκτορα ἄντα κατ ὄσσε παρίστατο δάκρυ χέουσα

Nor did his mother deck him for burial and weep
over him,
Nor his father, we who gave him birth, no, nor did
his wife,
wooed with many gifts, constant Penelope.
Face-to-face with Hector she stood and both eyes shed
tears.

The reasons graduate students provided for identifying the latter line as
machine-generated included "Hector should not be involved in this context" and
"Get out of here, Hector."

Sometimes evaluators marked true lines of Homer as machine-generated. Fig-
ure 6 shows the reasons graduate student provided for marking a line as machine-
generated when the line was not machine-generated.

Generating Homeric Poetry 17

Figure 6: Reasons evaluators selected for why they believed a line was machine-
generated.

The most common reason that a true line of Homeric poetry was marked as
machine-generated was, again, semantics. This reasoning has no correlation to
the placement of the machine-generated line in the passage being placed imme-
diately before or after the line selected by the evaluator. Evaluator’s confusion
was likely because they were reading passages out of context.

Evaluators also marked meter as the reason they believed a real line was
machine-generated. The comments left in the "Other" category suggest that eval-
uators may have marked "Meter" because the Homeric line contained rare (but
correct) metrical patterns. For example, an evaluator marked this line of Home-
ric poetry as machine-generated:

ὧδε δέ τις εἴπεσκεν ἀχαιῶν τε τρώων τε

The above line is scanned dactyl-spondee-dactyl-spondee-spondee-anceps. This
evaluator commented that "it is rare for a spondee to appear in the fifth foot
of dactylic hexameter." The presence of a spondee in the penultimate foot of a
hexmetric line is unusual, although not unheard of. The presence of a spondee
in the antipenultimate foot also makes the penultimate spondee more common
and characterizes the line as ‘spondeic.’

In general, the evaluators were able to identify machine-generated lines of
Homeric poetry primarily for semantic and syntax reasons. If we consider only
the lines identified by evaluators as machine-generated based upon metrical rea-
sons, the evaluator accuracy drops to 12.96%. Based on these results, we conclude
that we are able to successfully generate poetry in dactylic hexameter.

18 A. K. Lamar et al.

7.3 Evaluation of the Hierarchical Recurrent Encoder Decoder
Model

For the second model, HRED, we present a qualitative analysis of the 30 gen-
erated lines from the test set. All 30 machine-generated lines are given in the
Appendix.

The most striking aspect of the 30 lines generated by HRED is that none of
them come close to dactylic hexameter – an observation that one can make even
without understanding the Greek, simply by comparing the lines in Table 4 and
Table 5 in the Appendix. The lines generated by HRED are much longer and
are easily identified as not belonging in the Iliad or the Odyssey.

We suspect that HRED fails to produce lines in dactylic hexameter because
the decoder RNN is not conditioned on – i.e., it is not directly influenced by
– the encoding of the input sentence. Instead, the decoder RNN is conditioned
on, and thus directly influenced by, the encoding produced by the context RNN
which is an aggregation of multiple input sentences. Thus, the strict meter of
the input exerts a weak and indirect influence on the generated output.

Semantically, however, the lines generated by HRED are overall more coher-
ent than those generated by the first model. Consider the first machine-generated
line:

ἵπποισιν καὶ ὄχεσφιν παρὰ νηῶν ἂψ ἀπονοστήσειν προτὶ ἴλιον ἠνεμόεσσαν

πρόσθεν γάρ μιν μοῖρα δυσώνυμος ἀμφεκάλυψεν

This can be translated as:

They went away with horses and carriages alongside the ships towards
windy Ilium, for previously [powerful] fate enfolded them.

In this example, we see that HRED did quite well choosing semantically
related words. For example, it refers to Ilium as a windy city and it connects the
idea of Fate as a powerful force 5 – all concepts that show up in the Iliad and the
Odyssey. Furthermore, it is able to choose related nouns such as “horses" and
“carriages" and to recognize that ships travel toward a geographic destination.

Another interesting property of the lines generated by HRED is that many
of them contain preposition stacking. Homeric poetry often contains multiple
prepositional phrases as shown in the example above: “with horses", "alongside
the ships", "towards...Ilium". In contrast, however, the lines generated by HRED
contain fewer stacked participles – e.g., “having gone away", “having boarded the
ship" – favoring more concrete, aorist (i.e. simple), or present tense verbs.

Finally, many of the lines lose coherence towards the end. For example, the
third generated line in the test is:

πόλλ ὀλοφυρόμενος σχεδόθεν δέ οἱ ἦλθεν ἀθήνη ἀνδρὶ δέμας νέῳ μήλων

οἷοί τε ἀνάκτων παῖδες ἔασι

5 The phrase μοῖρα δυσώνυμος which was translated as “powerful fate" is syntactically
incorrect. The word δυσώνυμος has the incorrect gender.

Generating Homeric Poetry 19

This can be translated as:

Lamenting much, Athena went nearby to the young man in-such-a-
way...of sheep...Children of the gods, such as these, are...

Here, we are using the ellipsis to denote disconnected phrases. This sentence
begins coherently but it eventually devolves into a series of unrelated phrases.
This was a common pattern in many of the lines generated by HRED.

Overall, it is clear that the strength of the HRED model lies in its ability to
produce semantically coherent lines of poetry. However, this seems to come at
the cost of metrical accuracy.

8 Conclusion
In this paper, we investigated the use of encoder-decoder RNNs for generating
metrically accurate Homeric poetry. We experimented with two models: a ba-
sic encoder-decoder RNN and the hierarchical recurrent encoder-decoder model.
The basic encoder-decoder RNN model was able to produce metrically accurate
poetry however it under-performed in terms of generating semantically cohe-
sive lines of poetry that fit the broader context of the narrative. In contrast,
the HRED model produced more semantically coherent lines of poetry but was
completely unable to reproduce dactylic hexameter.

We hypothesize that this stark difference between the two models is a re-
sult of the type of connection that exists between the input (i.e. the input line
of poetry) and the generated output. In particular, the former model directly
connects the encoding of the input sentence to the generation of the output sen-
tence, ostensibly resulting in a stronger reproduction of dactylic hexameter. The
latter model instead chooses to aggregate successive inputs into a global context
encoding that is connected to the generation of the output sentence. This con-
text encoding loses the finer detail of the meter but is better able to summarize
and keep track of the semantic topic.

The models are similar in lesser ways – e.g., both models are able to capture
unique aspects of Homeric poetry such as epic correption or stacked prepositions.

9 Future Work
In the future, we would like to focus on creating an encoder-decoder model that
leverages the strengths of both the basic encoder-decoder RNN and the HRED
model. In particular, developing a model that connects the encoding of the input
sentence and the context encoding to the decoder so that the generated line of
poetry is directly influenced by both.

We would also like to train a basic encoder-decoder RNN that is able to look
at the previous two lines of poetry in a similar manner to HRED. This would
allow us to determine if HRED is able to produce more semantically coherent
lines of poetry because of the context encoder or simply because it sees more
preceding lines of poetry.

In addition, for both models, there is no explicit mechanism for constraining
where a Homeric character can appear in a passage. As such, we are interested

20 A. K. Lamar et al.

in developing a model that allows us to control where characters appear within
the poem. Since an encoder-decoder RNN produces a probability distribution
for the next word in the poem, we plan to investigate methods for biasing these
distributions towards words that are likely given both the location of the line
within the poem as well as the location of the word in the line.

10 Appendix
Below are two tables showing the 30 generated lines for the basic encoder-decoder
model and the hierarchical recurrent encoder-decoder.

Generating Homeric Poetry 21

Number Generated Line Feet Correct Feet Anceps Perfect line

1 τυδείδῃ δ ἄρα θυμὸν ἐνὶ στήθεσσιν ὄρινε 6 6 Y Y

2 νηὶ θοῇ ἐπίηρα πόδες τέρας οὐδέ τις ὕπνος 6 6 Y Y

3 τόφρα γὰρ ὡς τί ποτ ὀίομαι εἴ ποτ ἀθήνη 5 5 Y N

4 ῥηιδίως δαναῶν ἐπιβαινέμεν ἀλλὰ καὶ αὔτως 6 6 Y Y

5 ὀφθαλμοῖσι τε κατείρυσται καὶ ἐπαρτέες εἰσὶν ἑταῖροι 8 7 Y N

6 πρὶν τοιόσδ ἐστι διαμπερές αὐτὰρ ἀχαιοὶ 6 5 Y N

7 ἐλέησεν ἀχαιοῖσιν πυρὸς θέτις θεοειδής 6 4 Y N

8 ἴσχειν ἐν μεγάροισιν ἀκούσαμεν ὡς υἱόν 6 5 Y N

9 αὐτίκ ἄρ ἐγγύθεν ἔσκε προσηύδα θοῦρον ἄρηα 7 6 Y N

10 εἴσατο ἵνα μή με παρέστη ἅλις ὣς τιμήσαντο 7 6 Y N

11 ὣς ἄρα μὲν μάλα πάντες ἀεικέα μήδετο ἔργα 6 6 Y Y

12 ἀλλ ἄγε δὴ στέωμεν καὶ ἀλεξώμεσθα μένοντες 6 5 Y N

13 ἐλθόντ εἰς ἴδην ὅθι πάσχετε παλλὰς ἀνώγει 6 6 Y Y

14 νηυσὶν ἐπ ὠκεανοῖο μάχην τελαμωνιάδαο 7 6 Y N

15 καὶ τοὺς ἄλλῃ ἅμα μνηστῆρας ἔργου 5 5 Y N

16 ὣς ὁ νηὸς ἄγοντες ἐρεικόμενος περὶ δουρί 6 6 Y Y

17 ἦ ἴδον ἠέ τι μᾶλλον ἐμεῦ πολὺ κέρδιον εἴη 6 6 Y Y

18 τοῖς ἐπεί τοι πρὸς νῆας ἀρίστη φαίνετο βουλή 6 6 Y Y

19 ἀλλ ἤδη τρώεσσιν πειρήσομαι ἀλεγεινῆς 6 4 Y N

20 αἵματός εἰς ἀγαθοῖο φίλον τέκος οἷ ἀγορεύεις 6 6 Y Y

21 δεῖξε καὶ ὤμοιιν πέλαγος προτὶ ἄστυ φέρεσκον 6 6 Y Y

22 τόφρ εἴ τις πρῶτα θεῶν ἐθέλωμι τέτυκται 6 5 Y N

23 αὐτὰρ ἐγὼ δίχα πάντας ἐυκνήμιδας ἑταίρους 6 5 Y N

24 ἀργείων ὕπατον αἴαντα ταχὺν καὶ χεῖρας ὕπερθεν 7 6 Y N

25 ἀλλ ἄγε δὴ οἶκον δὲ μετ αὐτοῦ μίμν ἐθέλῃσιν 6 6 Y Y

26 ἀλλ ἄγ ἐμοὶ δότε τόξον ἐύξοον ὄφρα γένηται 6 5 Y N

27 ὡς δ ἄγε τηλέμαχος μάλα γὰρ γλαυκῶπις ἀθήνη 6 6 Y Y

28 τροίῃ φεύγων ὁ δ ἄντρου οἷσιν ἔθηκαν 6 5 Y N

29 ἷξε τόθ ἔσαν οἶκον δὲ καλυψώ δῖα θεάων 6 6 Y Y

30 ἕκτορα ἄντα κατ ὄσσε παρίστατο δάκρυ χέουσα 6 6 Y Y
Table 4: Thirty machine-generated lines from the encoder-decoder model.

22 A. K. Lamar et al.

Number Generated Line
1 ἵπποισιν καὶ ὄχεσφιν παρὰ νηῶν ἂψ ἀπονοστήσειν προτὶ ἴλιον ἠνεμόεσσαν πρόσθεν

γάρ μιν μοῖρα δυσώνυμος ἀμφεκάλυψεν

2 χῶρον μὲν πρῶτον αὐτὰρ ἔπειτα κλήρους ἐν κυνέῃ χαλκήρει πάλλον ἑλόντες ὁπ-

πότερος δὴ πρόσθεν ἀφείη χάλκεον ἔγχος

3 πόλλ ὀλοφυρόμενος σχεδόθεν δέ οἱ ἦλθεν ἀθήνη ἀνδρὶ δέμας νέῳ μήλων οἷοί τε

ἀνάκτων παῖδες ἔασι

4 οὐδ ἄλοχος πολύδωρος ἐχέφρων πηνελόπεια ἐν λεχέεσσιν ἑὸν πόσιν ὡς ὀφθαλμοὺς

τὸ γὰρ γέρας ἐστὶ θανόντων

5 ὅθι πλεῖστα δόμοις ἐν κτήματα κεῖται ὃς μενελάῳ δῶκε δύ ἀργυρέας ἀσαμίνθους

δοιοὺς δὲ τρίποδας δέκα δὲ χρυσοῖο τάλαντα

6 δ ἀνὰ θυμὸν ἅ περ τελέεσθαι ἔμελλον τοῖσι δὲ καὶ μετέειπε γέρων ἥρως ἁλιθέρσης

μαστορίδης ὁ γὰρ οἶος ὁμηλικίην ἐκέκαστο

7 ὣς ἐρέουσιν ἐμοὶ δὲ τότ ἂν πολὺ κέρδιον εἴη ἄντην ἢ ἀχιλῆα κατακτείναντα νέεσθαι

ἠέ κεν αὐτῷ ὀλέσθαι πρὸ πόληος

8 δαῖτα δώσει δέ μοι ὅς κ ἐθέλῃσιν οὐ γὰρ ἐπὶ σταθμοῖσι μένειν ἔτι τηλίκος εἰμί ὥστ

πάντα πιθέσθαι

9 λυσόμενος παρὰ σεῖο φέρω δ ἀπερείσι ἄποινα ἀλλ αἰδεῖο θεοὺς ἀχιλεῦ αὐτόν τ

ἐλέησον μνησάμενος σοῦ πατρός ἐγὼ δ περ

10 ἵππους οἳ δὲ τάχ αὐτοὶ ἐπειγόμενοι περὶ νίκης ἐνθάδ ἐλεύσονται τότε δὲ γνώσεσθε

ἕκαστος ἵππους ἀργείων οἳ δεύτεροι οἵ τε πάροιθεν

11 ἐμμεμαὼς ἐπόρουσεν ἐρυσσάμενος ξίφος ὀξὺ σμερδαλέα ἰάχων ὃ δὲ χερμάδιον

λάβε χειρὶ αἰνείας μέγα ἔργον ὃ οὐ δύο γ ἄνδρε φέροιεν

12 ἔρχεσθε πρὸς δώμαθ ἵν αἰδοίη βασίλεια τῇ δὲ παρ ἠλάκατα δ αὐτὴν ἥμεναι ἐν

μεγάρῳ ἢ εἴρια χερσίν

13 τυρῶν τέ μιν ἔνδον ἥμενοι ἧος ἐπῆλθε φέρε δ ὄβριμον ἄχθος ὕλης ἵνα οἱ ποτιδόρ-

πιον εἴη

14 τῶν ἄλλων δαναῶν μετ ἀμύμονα πηλείωνα ἴθυσεν δὲ διὰ προμάχων συὶ εἴκελος

ἀλκὴν καπρίῳ ὅς τ ἐν ὄρεσσι κύνας τ αἰζηοὺς

15 ἕκτορά τ ἀμφὶ μέγαν καὶ ἀμύμονα πουλυδάμαντα αἰνείαν θ ὃς τρωσὶ θεὸς ὣς τίετο

δήμῳ τρεῖς τ πόλυβον καὶ ἀγήνορα δῖον

16 ὣς ἔφαθ ἡ δ ἐχάρη καὶ ἀπὸ λέκτροιο γρηὶ βλεφάρων δ ἀπὸ δάκρυον ἧκεν καί μιν

φωνήσασ ἔπεα πτερόεντα προσηύδα

17 καὶ γάρ τίς θ ἕνα μῆνα μένων ἀπὸ ἧς ἀλόχοιο ἀσχαλάᾳ σὺν νηὶ ὅν περ ἄελλαι τε

θάλασσα

18 ἔνθα μὲν ἑπτάετες μένον ἔμπεδον εἵματα δ αἰεὶ δάκρυσι τά μοι ἄμβροτα δῶκε

καλυψώ ἀλλ ὅτε δὴ μοι ἐπιπλόμενον ἔτος ἦλθεν

19 δ ἄρα τούς γε οἵ τε καὶ ἄλλους ἀνθρώπους πέμπουσιν ὅτις σφέας εἰσαφίκηται καὶ

τὰ μὲν εὖ κατέδησεν ὑπ αἰθούσῃ ἐριδούπῳ

20 ἀλλ οὐ γάρ τις πρῆξις ἐγίγνετο μυρομένοισιν ἀλλ ὅτε δή ῥ ἐπὶ νῆα θοὴν καὶ θῖνα

θαλάσσης ᾔομεν ἀχνύμενοι θαλερὸν κατὰ δάκρυ χέοντες

21 αὐτὰρ ἐπεὶ δὴ δούρατ μνηστήρων τοῖς δ ἄρα μύθων ἦρχε πολύτλας δῖος ὀδυσσεύς

ὦ φίλοι ἤδη μέν κεν ἐγὼν εἴποιμι καὶ ἄμμι

22 λαιμὸν ἐπὶ οἷ τετραμμένον ὀξέι δουρί ἐκλίνθη δ ἑτέρωσε κάρη ἐπὶ δ ἀσπὶς ἑάφθη

καὶ κόρυς ἀμφὶ δέ οἱ θάνατος χύτο θυμοραιστής

Generating Homeric Poetry 23

23 μεσσηγὺς νηός τε καὶ αὐτοῦ τηλεμάχοιο τὸν δὲ θεοκλύμενος ἑτάρων ἀπονόσφι

καλέσσας ἔν τ ἄρα οἱ φῦ χειρὶ ἔπος τ ἔφατ ἔκ τ ὀνόμαζε

24 μή τι πατέρων γένος οἳ τὸ πάρος περ τ ἠνορέῃ τε πᾶσαν ἐπ αἶαν τὸν δ αὖ τηλέμαχος

πεπνυμένος ἀντίον ηὔδα

25 ὁππότ ἐγώ περ ἴω μετὰ μῶλον ἄρηος αὐτὰρ ἐπεί κ ἀπὸ ναῦφι μάχην ἐνοπήν τε

δίηται ἀσκηθής μοι ἔπειτα θοὰς ἐπὶ νῆας ἵκοιτο

26 μύθων τε ἔμεναι τε ἔργων ὡς ἂν ἔπειτ ἀπὸ σεῖο φίλον τέκος οὐκ ἐθέλοιμι οὐδ εἴ

κέν μοι θεὸς αὐτὸς

27 πατρίδ ἐμὴν ἄλοχόν τε καὶ ὑψερεφὲς μέγα δῶμα αὐτίκ ἔπειτ ἀπ ἐμεῖο κάρη τάμοι

ἀλλότριος φὼς εἰ μὴ ἐγὼ τάδε τόξα φαεινῷ ἐν πυρὶ

28 χειρί τέ μιν κατέρεξεν ἔπος τ ἔφατ ἔκ τ ὀνόμαζεν ἦ δὴ ἀλιτρός γ ἐσσὶ καὶ οὐκ

εἰδώς οἷον δὴ τὸν μῦθον ἀγορεῦσαι

29 δὲ ὃ δ ἄρ τέκε παῖδα αὐτὰρ ἔμ ἀγχίσης πρίαμος δ ἔτεχ ἕκτορα δῖον ταύτης τοι

γενεῆς τε καὶ αἵματος εὔχομαι εἶναι

30 ὦ γέρον ἦ μάλα δή σε νέοι τείρουσι σὴ δὲ βίη λέλυται χαλεπὸν δέ σε γῆρας ὀπάζει

ἠπεδανὸς δέ νύ τοι θεράπων δέ τοι ἵπποι

Table 5: Thirty machine-generated lines from the HRED model.

Acknowledgments
The authors of this paper would like to thank the following people for their help
evaluating machine-generated Homeric poetry: Emory B. Brigden from the Uni-
versity of Puget Sound; Konnor Clark, Edgar A. Garcia, and Megan O’Donald
from the University of Washington; Rachel E. Dubit, Grace Erny, Nick Gardner,
Dillon Gisch, and Brian D. Le from Stanford University; Kathryn H. Stutz from
John Hopkins University.

References
1. https://github.com/julianser/hed-dlg
2. Homeri Opera in Five Volumes. Oxford University Press (1920)
3. C. Zhou, W.Y., Ding, X.: Genetic algorithm and its implementation of automatic

generation of chinese songci: Genetic algorithm and its implementation of auto-
matic generation of chinese songci. Journal of Software 21(3), 427 – 437 (2010)

4. D. Bahdanau, K.H.C., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv:1409.0473

5. G. Klein, Y. Kin, Y.D.J.S., Rush, A.: Opennmt: Open-source toolkit for neural
machine translation. In: Proc. of ACL 2017, System Demonstrations. pp. 67 – 72
(2017)

6. Griswold, C.L.: Plato on rhetoric and poetry. In: Zalta, E.N. (ed.) The Stanford
Encyclopeida of Philosophy (2016)

7. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation
9(8), 1735 – 1780 (1997)

8. Honoratus, M.S.: Servii Grammatici qui feruntur in Vergilii carmina commentarii.
Cambridge University Press (2011)

https://github.com/julianser/hed-dlg

24 A. K. Lamar et al.

9. I. Serban, A. Sordoni, Y.B.A.C., Pineau, J.: Building end-to-end dialogue systems
using generative hierarchical neural network models. In: Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence. pp. 3776 – 3783 (2016)

10. J. He, M.S., Jiang, L.: Generating chinese classical poems with statistical machine
translation models. In: Proc. of the Twenty-Sixth AAAI Conf. on Artificial Intel-
ligence. pp. 1650 – 1656 (2014)

11. J. Pennington, R.S., Manning, C.: Glove: Global vectors for word representation.
In: Empirical Methods in Nat’l Lang. Processing. pp. 1532 – 1543 (2014)

12. J.H. Lau, T. Cohn, T.B.J.B., Hammond, A.: Deep-speare: A joint neural model
of poetic language, meter and rhyme. In: Proc. of the 56th Annual Meeting of the
Assoc. for Compt’l Linguistics. pp. 1948 – 1958 (2018)

13. Jiang, L., Zhou, M.: Generating chinese couplets using a statistical mt approach.
In: Proc. of the 22nd Int’l Conf. on Compt’l Linguistics. pp. 377 – 384 (2008)

14. K. Cho, B. van Merrienboer, C.G.D.B.F.B.H.S., Bengio, Y.: Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine translation. In: Proc.
of the 2014 Conf. on Empirical Methods in Nat’l Lang. Processing. pp. 1724 – 1734
(2014)

15. Lamar, A., Chambers, A.: Generating homeric poetry with deep neural networks.
In: Proc. of the 1st Int’l. Conf. on Transdisciplinary AI (2019)

16. M. Ghazvininejad, X. Shi, Y.C., Knight, K.: Generating topical poetry. In: Proc.
of the 2016 Conf. on Empirical Methods in Nat’l Lang. Processing. pp. 1183 – 1191
(2016)

17. M. T. Luong, H.P., Manning, C.: Effective approaches to attention-based neural
machine translation. arXiv:1508.04025 (2015)

18. Manurung, H.M.: An Evolutionary Algorithm Approach to Poetry Generation.
Ph.D. thesis, University of Edinburgh (2003)

19. Martins, A., Astudillo, R.: From softmax to sparsemax: A sparse model of atten-
tion and multi-label classification. In: Proc. of the 33rd Int’l. Conf. on Machine
Learning. vol. 48, pp. 1614 – 1623 (2016)

20. N. Tosa, H.O., Minoh, M.: Hitch haiku: An interactive supporting system for com-
posing haiku poem. In: Entertainment Computing – ICEC 2008. pp. 209 – 216
(2009)

21. N. Tosa, X.W., Nakatsu, R.: New hitch haiku: An interactive renku poem compo-
sition supporting tool applied for sightseeing navigation system. In: Entertainment
Computing – ICEC 2009. pp. 191 – 196 (2009)

22. Oliveira, H.G.: Poetryme: A versatile platform for poetry generation. In: Proc.
of the European Conf. on A. I. 2012 Workshop on Compt’l Creativity, Concept
Invention, and General Intelligence. pp. 1 – 21 (2012)

23. Porter, J.I.: Homer, skepticism, and the history of philology. In: Humphreys, S.C.,
Wagner, R.G. (eds.) Modernity’s Classics, pp. pp. 261 – 292. Springer (2013)

24. Q. Wang, T. Luo, D.W., Xing, C.: Chinese song iambics generation with neural
attention-based model. In: Intl. Joint Conf. on Artificial Intelligence. pp. 2943 –
2949 (2016)

25. R. Manarung, G.R., Thompson, H.: Using genetic algorithms to create meaningful
poetic text. Journal of Experimental Theoretical Artificial Intelligence pp. 43 –
64 (2010)

26. R. Yan, H. Jiang, M.L.S.L.X.L., Li, X.: i, poet: Automatic chinese poetry compo-
sition through a generative summarization framework under constrained optimiza-
tion. In: Proc. of the Twenty-Third Intl’ Joint Conf. on Artificial Intelligence. pp.
2197 – 2203 (2013)

Generating Homeric Poetry 25

27. Robin Waterfield, T.: Plato Republic. Oxford University Press (1993)
28. Sandys, J.E.: History of Classical Scholarship From the Sixth Century B.C. to the

End of the Middle Ages. Cambridge University Press (1903)
29. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. IEEE Transac-

tion on Signal Processing 45(11), 2673 – 2681 (1997)
30. Y. Wu, M. Schuster, Z.C.Q.V.L., Norouzi, M.: Google’s neural machine trans-

lation system: Bridging the gap between human and machine translation.
arXiv:1609.08144

31. Zhang, X., Lapata, M.: Chinese poetry generation with recurrent neural networks.
In: Proc. of the 2014 Conf. on Empirical Methods in Nat’l Lang. Processing. pp.
670 – 680 (2014)

	Generating Metrically Accurate Homeric Poetry with Recurrent Neural Networks

