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Abstract. Robotic prosthetic hands are commonly controlled using elec-
tromyography (EMG) signals as a means of inferring user intention. How-
ever, relying on EMG signals alone, although provides very good results
in lab settings, is not su�ciently robust to real-life conditions. For this
reason, taking advantage of other contextual clues are proposed in pre-
vious works. In this work, we propose a method for intention inference
based on particle �ltering (PF) based on user hand's trajectory infor-
mation. Our methodology, also provides an estimate of time-to-arrive,
i.e. time left until reaching to the object, which is an essential variable
in successful grasping of objects. The proposed probabilistic framework
can incorporate available sources of information to improve the infer-
ence process. We also provide a data-driven method based on hidden
Markov model (HMM) as a baseline for intention inference. HMM is
widely used for human gesture classi�cation. The algorithms were tested
(and trained) with regards to 160 reaching trajectories collected from 10
subjects reaching to one of four objects at a time. The results show a
classi�cation accuracy of 91.3% and 82.2% for the entire reaching period
for the PF and HMM methods, respectively.

Keywords: Prosthetic Robot Hand; Particle Filter Method; Human-in-the-loop
System; Hidden Markov Model; Gesture Classi�cation; Shared Control.

1 Introduction

Robotic prosthetic hands can compensate part of the lost ability for upper ex-
tremity amputees. Successful integration of the robot highly depends on how
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Fig. 1: The experimental setup for testing the hypothesis that our method can
predict the projection of user intent on an arbitrary plane.

naturally it reacts to the environment and the user inputs. Thus, controlling
the robot is very important besides its mechanical characteristics. Controlling
robotic prosthetic hands is a good example of human-robot collaboration. It can
be as simple as pressing a button for doing the grasp or changing the grasp type,
or as complex as inferring user intent from the environment and bio-signals. In
the latter case, the robot has to infer the grasp type it has to perform, the tra-
jectory of �nger tips and/or wrist joint(s), and the right time to execute the
�nal grasp, on-the-�y. Intention inference can be achieved by utilizing cues from
either the user or the environment.

Processing electromyography (EMG) signals from the user is one of the com-
monly used methods to infer grasp type or to trigger the grasp action. Using
EMG alone, however, has been insu�cient for real-life scenarios [14,22,50], due
to issues such as electrode shift or change in number of electrodes [39], varia-
tions in electrode size and orientation [57], muscle fatigue [23, 36], variations in
limb positioning [26], change of EMG signal patterns over time [2], and e�ect
of prosthesis weight on signal patterns [8]. This can be partially explained by
lack of enough diversity and variation in the training datasets [14,24], however,
one may argue that including such great diversity in datasets is at least very
inconvenient for the end-users and clinicians, if not totally impossible [6,7]. The
situation becomes even more severe considering interpersonal di�erences and the
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amount of data collection burden it may put on a single user. Although there
are e�orts on learning combined motions from single motions and hence relaxing
this required variation partly [17], including all the di�erent situations still needs
a great amount of time and e�ort.

This can explain why most commercial prosthetic hands still use the �fty-
year-old binary EMG signal inference technique [12], the two-channel open/close
control, performed by monitoring levels of activation of EMG signals [22, 28].
High execution and reaction time as well as di�cult training are two other
issues with using EMG signals [44]. Re-calibration has been suggested as a simple
workaround to adapt to new conditions and changing characteristics of the EMG
signals from time to time. However, this usually puts extra e�ort and time on
the user side, specially if they need to perform it on a daily basis [37].

To overcome the de�ciencies of intent inference performed on merely EMG
signals, it is proposed to use more inputs (or cues) [6, 28]. Markovic et al. [38],
for instance, utilize vision (depth camera) and proprioception (by using IMU
sensor) to help with the EMG classi�er. Dosen et al. [10] use a camera-in-hand
to infer grasp type and size, and a bipolar EMG sensor to trigger the grasp
action. Patel et al. [41] adopt readings of IMU, force, and grip aperture sensors
to help regulate the EMG signal classi�er output. Gigli et al. [19] detect the
object gazed at and uses vision to retrieve object information. A multimodal
multi-kernel classi�er is then used to �nd the most relevant grasp type given
the extracted information. In a smart environment approach, Fukuda et al. [16]
describe a platform in which each object is connected to the internet and has
its own information stored, i.e. dimensions, shape, contact surface material, etc.
The EMG signal is then used to decide the time of closing/opening. Knowledge
of task a priori is another cue which can be used for intention inference. Patel
et al. [42] ask the users the set of grasps they need in each experimental task
before it starts and limit the grasp search space based on that. They show a 30%
reduction in overall task completion time.

Inferring user intent in its most general case can be a very di�cult task,
since it is a hidden state of the system which can only be accessed through its
signs (cues). Using more cues leads to more accurate intention inference. That is
why in more recent works more cues are used to infer intention more accurately.
However, to the best of our knowledge, no one has proposed a generalized frame-
work that can systematically process the cues and give the distribution of user
intent or at least its maximum likelihood estimate (MLE). Inferring distribution
of the intention might be a bit complex though, as the Gaussian distribution
assumption may not �t the system likelihood and posterior distributions or the
system noises. So the conventional methods of Gaussian �ltering (i.e. Kalman
�lter) may not apply to this problem. Because of this, non-Gaussian Bayes �lters
are considered in this paper as alternatives. Particle �lter (PF) is a Bayes' �lter
in this class that can be used [54].

In this paper, we are proposing a framework based on the particle �lter
method which can systematically combine di�erent cues and estimate distribu-
tion of the projection of the user intent on an arbitrary plane (we call it Γ
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plane, see Fig. 1). Here, we use only kinematics of the motion obtained using a
camera-based tracker. However, other cues can be �t in the framework readily.

As an alternative method and also a baseline to compare the PF algorithm
with, we propose hidden Markov models (HMM) for intent inference. HMM has
been widely used for modeling signals with temporal variations, e.g. speech recog-
nition [18], hand-writing recognition [4,30], and human gesture detection [45,52].
An interesting property of HMM is its capability of incremental (lifelong) learn-
ing [33, 34], where the model updates itself incrementally after failure cases or
low-performance outcomes without retraining from scratch. Interestingly, incre-
mental learning is also suggested to overcome the di�culties with the current
approaches of EMG pattern recognition [5,7,20]. However, in this paper we con-
sider using pure HMM with its ability to extend to incremental learning scenarios
as an interesting future direction.

The contribution of this paper is thus the introduction of a PF framework for
multi-cue intention inference as well as an HMM approach serving as a baseline
and a possible future direction. This study extends the work in [51].

1.1 Motivation and Relevance

In order to motivate the research study presented in this paper, we consider a hu-
man prosthetic hand user performing a task which involves packaging of goods.
This provides the research team with a controlled experimentation environment
where additional information sources can be incorporated. Yet, the uncertainties
in human decisions are maintained. The task involves the packing of a subset of
known objects that can be picked up from pre-determined locations. This op-
erational environment and task scenario justi�es the assumptions made for the
research study. The framework is aimed at enhancing the human-robot interac-
tion for an amputee in the workplace by minimizing the time durations spent
on information exchange between the user and the prosthetic hand.

1.2 Outline

The paper is organized as follows. Section 2 describes the problem using a proba-
bilistic modeling framework as well as the baseline, followed by the methodology
to perform user experiments. Experimental results are presented in Section 3. A
discussion of results and conclusion and future work are included in Sections 4
and 5, respectively.

2 Methods

2.1 Problem De�nition

If we de�ne a plane Γ , which the user's hand is going to intercept while reaching
to some objects, our objective is to �nd the projection of user intent on that
plane. If we assume a discrete time system, we particularly de�ne the system
state to be:

xt = [px, py, ta] (1)
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where px is the x element of the projection of user intent on the plane, py is
the y element of the projection of user intent on the plane, and ta is the time
remaining from instant t until the hand intercepts the plane.

We assume the system measurement zt to be comprised of hand position
elements:

zt = [Hx,t, Hy,t, Hz,t] (2)

where Hx,t, Hy,t, and Hz,t are the positions of the hand palm with respect to x
axis, y axis, and z axis, respectively. The right-handed coordinate system origin
is de�ned on the Γ plane where x and y axes are located on the plane, parallel
and normal to the table top, respectively, and z axis is normal to the Γ plane
(see Fig. 1).

If we assume the input to the system to be ut, then our goal is to estimate
the system posterior distribution Pt:

Pt = p(xt|u1:t, z1:t) (3)

where 1 : t subscript indicates the series of that variable from instant 1 to instant
t.

The main problem would then condense to �nding the posterior distribution
of system Pt given the sequence of measurements z1:t and inputs u1:t. Note that
in this problem we assume the input ut to be null; however, we keep ut in the
formulation to keep the derivation general.

2.2 Particle Filter Method

Particle �lter (PF) forms an estimate of the system state by a number of par-
ticles. Each particle represents a possible state of the system. These estimates
are updated at every time step to improve the overall estimate and to match
changes that have happened in the system state. Particles are �rst sampled ran-
domly from the state transition distribution (i.e. prediction step), p(xt|ut, xt−1).
Since the distribution of particles may not match the posterior, they are then
corrected using the likelihood (measurement distribution) of the system (i.e. cor-
rection step), p(zt|xt). This is done through resampling in particle �lter method.
Resampling works by �rst assigning weights (based on the likelihood function) to
each particle in the particle set, and then by randomly selecting particles (with
replacement) based on their weights, so that particles with greater weights have
more chance to survive. In other words, particles will gather around states in
the state space that are believed to have higher weights. Sequential Importance
Sampling (SIS) method, which particle �lters is a special case of, elaborate more
on the underlying mathematical foundations for resampling [3]. Algorithm 1
indicates a more formal description of the particle �lter method, which recur-
sively obtains the posterior distribution Pt. We assume the initial posterior to
be uniform:

P0 ∝ U(xmin, xmax) (4)
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Algorithm 1: Particle �lter algorithm for intention inference. x
[m]
t in-

dicates the state of particle m at time t and η shows a normalization
factor for the particles' weights to sum up to one.

Input: Pt−1, ut, zt
Output: Pt

1 N = Number of PF iterations;
2 M = Number of particles;

3 Sample x
[m]
t ∝ U(xmin, xmax) for m = 1, · · · ,M ;

4 for k = 1 to N do

5 Sample x
[m]
t ∼ p(xt|ut, xt−1) for m = 1, · · · ,M ;

6 Compute ω
[m]
t = η p(zt|x[m]

t ) for m = 1, · · · ,M ;
7 Resample particles (with replacement) based on computed weights

ω
[m]
i , for m = 1, · · · ,M ;

8 end

where xmin and xmax are minimum and maximum of system states, respectively.
For a detailed derivation of the algorithm see [54].

State Transition Distribution State transition distribution is used to up-
date the estimation of the states based on previous estimated states and current
system inputs. We model the state transition distribution with a (multi-variate)
Gaussian distribution:

p(xt|ut,xt−1) ∼ N (µ,Σ) (5)

where µ is the mean and Σ is the covariance matrix. If we de�ne the mean value
of the particles' states,

xt = E[Xt]

we would then de�ne the consecutive change in the mean particle state as the
motion,

mt = xt − xt−1 (6)

For the value of the µ in the above state transition equation we then assume

µ = xt−1 + mt (7)

The covariance matrix Σ is chosen to be a diagonal matrix and its diag-
onal elements are determined by trial and error. Larger values of Σ diagonal
elements yield better exploration of the state space in the corresponding eigen-
vector directions and easier avoidance of local minima, but smaller values lead
to smoother results.
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Measurement Distribution The measurement distributions are used to up-
date the particle weights followed by the resampling step. The likelihood function
might be assumed to be composed of several independent measurements, thus a
product of several weighting functions:

p(zt|xt) ∝
K∏
i=1

wi(xt) (8)

where K is the number of available cues in the problem. Cues are problem-
speci�c and depend on the information available from sensors. But we put no
constraint on the number of weight functions used. For example, we may have
weight functions corresponding to EMG/EEG signals, eye gaze trackers, hand
pose and acceleration, etc. In this paper, our weight functions are based only on
the hand trajectory for the purpose of demonstration. We de�ne three di�erent
weight functions regarding di�erent states in the state vector. In the next section
we will go over the weight functions in detail (see Sec. 2.3).

As one of the improvements suggested for particle �lter method [11], it is
recommended to choose the weight functions to have �heavy� tails. It is possible
to create the same e�ect by adding a small constant to our weight functions:

p(zt|xt) ∝
K∏
i=1

(ε0,i + wi(xt)) (9)

This produces a �heavy-tailed� distribution even if we use an exponentially
degrading tail distribution like Gaussian distributions. The value of ε0,i may be
determined by trial and error. For a certain weight function, the greater the
value of its respective ε0,i the more evenly it is distributed for di�erent values of
xt. So we can adjust the sensitivity of model to the weight functions by tuning
ε0,i.

Classi�cation for item selection We use px and py from the system states
to classify the item which the user is intending. We assume the ideal distribution
of particles around item k on the Γ plane to be Gaussian:

Ik(x) ∼ N (µk,Σk) (10)

where µk is the projected location of item k on the Γ plane and Σk is the
covariance matrix. As stated before, particle �lter gives an approximation of
the system posterior distribution function. So by comparing the distribution
of particles in the Γ plane with Ik's at each time instant t, we can estimate
the item which is most likely to be intended at that time t. We compare the
distribution using Kullback-Leibler (KL) divergence [35], which measures how
close two distributions are:

DKL(Ik‖ωt) =
M∑
m=1

Ik

(
p
[m]
t

)
log

Ik

(
p
[m]
t

)
ω
[m]
t

(11)
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where p
[m]
t = [p

[m]
x,t , p

[m]
y,t ] indicates the position for particle m on the Γ plane

at time t. Then, we classify the user intent as the item with the lowest KL
divergence.

2.3 Selecting weight functions

We have selected three di�erent weight functions which are functions of current
system state. Weight functions are supposed to encourage �true� states and dis-
courage �false� states. The more uniformly a weight function is distributed, the
less sensitive it is to noises. However, convergence to the �true� state would also
happen in more iterations due to lower information content.

Fig. 2: We categorize hand trajectory into three regimes: �inwards�, �parallel�,
and �outwards�. When the hand trajectory is pointing towards the Γ plane, we
call it �inwards�, when it is parallel to the plane within a threshold, we call it
�parallel�, and otherwise �outwards�.

Weight function for trajectory Depending on the direction of hand trajec-
tory, we may have three cases, �outwards�, �parallel �, and �inwards� (see Fig. 2).
The status of hand trajectory at instant i, si, is formally de�ned as:
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si =

outwards, if vi.n̂ > θ
parallel, if

∣∣vi.n̂∣∣ ≤ θ
inwards, if vi.n̂ < −θ

(12)

where vi is the hand's velocity vector at instant i and n̂ is the normal of the Γ
plane.

We model the weight function for trajectory, Wr, by a Gaussian Mixture
Model (GMM) for the last Q time instances, which is de�ned as following:

Wr =

t∑
i=t−Q

ωi ×N
(
ji,Σr

)
(13)

where ωi speci�es the weighing factor for the individual Gaussian models, ji
identi�es the mean used for the Gaussian models which will be discussed more,
and Σr is a constant covariance matrix (see Fig. 3). In order to put more em-
phasis on the recent time instances, we assume the weighing factor ωi of the
Gaussian models to be exponentially decaying with time:

ωt−i = λi0, i = 0, 1, ..., Q (14)

where λ0 ≤ 1 is the decaying factor. By choosing λ0 = 1 for example, all Gaussian
models contribute equally to the GMM.

To de�ne ji at time instance i, we �t both a �rst-order and a second-order
curve to the last T points of the hand trajectory using least-squares method.
Then, we �nd the intersection of these two curves with the Γ plane and call the
intersection points (if they exist) c1,i and c2,i, for the �rst-order and second-
order curves, respectively. The second-order curve has always two real answers
or none. c2,i is the one which satis�es the simple condition vi · (Hi − c2,i) > 0,
i.e. choosing the answer which is in the direction of hand velocity.

At time instance i, if the status of the hand trajectory, si, is �inwards�, we
de�ne:

ji =

{
c2,i if c2,i exists

c1,i otherwise
(15)

If the status is �outwards� or �parallel� at instance i, we simply de�ne ji to
be projection of hand position on the Γ plane, i.e.:

ji =
[
Hx,i, Hy,i, 0

]
(16)

This is a heuristic to maintain particle states in reasonable positions when
the hand trajectory does not convey any useful information.
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Fig. 3: We assume the extensions of user's hand trajectory to form a GMM on
the Γ plane. The individual Gaussian models are depicted on the Γ plane. Hi

indicates hands position at instant i. vi indicates hand's velocity vector (tangent
to trajectory) at instant i. We assume that previous time steps have a lower
weight in the GMM.

Weight function for item proximity The trajectory weight function,
Wr, helps us �nd an estimation of the user intent on the Γ plane. If we know
the location of the objects a priori, and we assume that user's intention is to
reach one of the objects, a helping weighting function would encourage particles
remain close to one of the items. However, this multi-modal weight function may
cause converging to local minima. Instead, one would limit the support for the
weighting functions. In other words, we de�ne:

W =

{
W

[k]
b if Hi in Rk
Wr otherwise

(17)

where W
[k]
b is the weight function of proximity to item k and Rk is the region

corresponding to item k. We simply de�ne the regions Rk to be spheres con-
centric with the objects center of geometries. We should note, however, for this
method to work, regions must be mutually exclusive and therefor this weight
function will not work for very cluttered environments.

The weight function for proximity to items is written as:
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W
[k]
b =

1

1 + Cb

((
px − o[k]x

)2
+
(
py − o[k]y

)2) (18)

where Cb is a constant which tunes importance of the weight function with

respect to other weight functions, o
[k]
x is the geometric center of item k in the x

direction, and o
[k]
y is the geometric center of item k in the y direction.

Weight function for time-to-arrive One of the states of the system is
time-to-arrive ta, i.e. the remaining time that we expect the hand to reach an
object. This state is important because it can help to parameterize the grasp, i.e.
adjusting the grasp aperture with respect to the time remaining to the object.

As denoted before, vi represents the hand velocity at instance i. We thus
indicate the time-to-arrive implied by vi at instance i to be linearly de�ned as:

ta,i =
Hz,i

vi.n̂
− telapsed (19)

where telapsed indicates the elapsed time since hand was at Hi.
Assuming a GMM representation like Eq. (13) based on the history of the

hand's trajectory, we have:

W [m]
e =

t∑
i=t−Q

ωi ×N
(
ta,i,Σe

)
(20)

where Σe is a constant covariance matrix. Gaussian model weighing factors, ωi,
are obtained as in Eq. (14).

2.4 Hidden Markov model

Hidden Markov model is a two-layer statistical model with the inner hidden
layer being a discrete Markov model. The outer measurable layer simply emits
observations from the inner Markov states [47].

HMM is parameterized by a transition matrix A which characterizes the
transition probabilities between the Markov model states, emission probability
matrix B which denotes the probability of the observation from each Markov
state, and initial state distribution π which determines the probability of starting
from each Markov model state. Hence, an HMM is fully characterized by λ =
(A,B, π). HMM is basically de�ned for discrete emissions probabilities. However,
it can easily be generalized to continuous emissions by providing continuous
emission probabilities.

HMM can both be trained in a supervised or unsupervised manner. In the
unsupervised way the model learns a generative model of the provided data
sequences. In the application of HMM for speech or motion recognition usu-
ally several HMMs are trained, one for each class, in an unsupervised manner.
Although the training process of a single HMM is done in unsupervised mode,
because one model is trained for each label, the overall process requires label, i.e.
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a supervised training process. If we consider an observation sequence of length
τ and associated with class κ de�ned as

O[κ] = {O[κ]
1 , ...,O[κ]

τ } (21)

then we are interested in the following maximum likelihood problem for training
the HMM:

λ[κ] = argmax
λ

P (O[κ]|λ), for κ = 1, ..., Ω (22)

where Ω is the number of classes.
Once model λ[κ] is trained, a new data sequence O can be classi�ed as the

class with the maximum likelihood:

class (O) = argmax
κ∈{1,...,Ω}

P (O|λ[κ]) (23)

The likelihood of an HMM can be computed e�ciently by the forward-
backward algorithm [46] which utilizes dynamic programming in its core. To
solve the maximum-likelihood problem of Eq. 22 one may use Baum-Welch algo-
rithm [46] which uses forward-backward algorithm iteratively in an expectation-
maximization (EM) framework. Baum-Welch algorithm �rst assumes the un-
known parameters to be known with an arbitrary value, then computes the
current likelihood. Then it tries to �nd modi�cations in the model parameters
such that likelihood will increase an so on.

Since Baum-Welch algorithm�like all other EM class algorithms�can only
�nd a local maximum, we run the algorithm for NB times with di�erent initial-
ization and choose the one with the highest score (i.e. likelihood).

There are two popular architectures for the HMM's underlying Markov model,
an ergodic (fully-connected) architecture and a left-to-right architecture. In the
ergodic architecture, each state can have transitions to any other state, whereas
in left-to-right architecture states can only have transitions to the states on their
right, thus creating a one-directional architecture. Left-to-right architecture is
particularly popular in the motion detection literature [32,34,53], however, [45]
has shown that ergodic and left-to-right architectures have mostly the same
performance for the purpose of motion detection. Therefore, we use an ergodic
architecture in this paper for its better numerical stability.

For initialization of the HMM parameters, we use random initializatin for
the transition matrix A and initial probability π. We use multivariate Gaussian
distribution as the emission probability. Then, we would initialize the respective
mean parameter by using a k-means clustering over training data sequences,
with number of clusters k equal to the number of Markov model states NM .
We also assume the covariance matrix ΣE of the multivariate Gaussian to be a
diagonal matrix of the form:

ΣE = diag
(
cov

(
XT
)
+ εI

)
(24)
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where X is the sequence of all training data concatenated into a large sequence,
ε is a small constant to avoid non-singularity in the covariance matrix, and I is
the identity matrix.

Since k-means clustering depends on the distance between data points, each
feature within the input sequence must be scaled. We scale each feature with
regards to the mean and variance of that feature in the training data for each
class. In other words, test data is not used to �nd the scaling factors in order to
avoid data leakage.

The features in the observation input can be any combination of the available
sensor readings. The features for the motion detection are usually designed to
be insensitive to displacement, i.e. translational invariance. While favorable in
motion detection, this attribute would be detrimental to the intent detection in a
setting where relative position of user's hand and objects matters. In this paper,
we consider several possible combinations of features based on the hand position
readings zt and objects' locations prior. Each combination is trained within a
range of di�erent number of Markov states and then the best combination and
number of Markov states are chosen as the �nal con�guration. The candidate
feature sets include:

(1)O[κ]
t =

[
z
[κ]
t

]
(2)O[κ]

t =
[
z̃
[κ]
t

]
(3)O[κ]

t =
[
z
[κ]
t , ∆zt

]
(4)O[κ]

t =
[
z
[κ]
0 , ∆zt

]
(25)

where z
[κ]
t = zt − o[κ] is the hand position relative to item κ,

z̃
[κ]
t = MovingAverage

(
z
[κ]
t

)
is the �ltered relative hand position,∆zt = zt−zt−1

is the �rst order di�erence of the hand position, and z
[κ]
0 is the initial relative

hand position. Note that all candidate feature sets incorporate the knowledge of
item locations by considering relative positions. This also obviates the need for
knowing the origin of the world coordinate frame to compute the feature sets.

Here, we use [κ] superscript with an abuse of notation to denote observation
calculated with respect to class κ, which observation O may or may not be as-
sociated with. In (21) this notation was used to denote observations that were
knowingly associated with class κ. In order to calculate the likelihood of an ob-
servation associated with a particular class κ in Eq. (23), we use the observation
calculated with respect to that class κ.

2.5 Experimental Setup

We have set up an experiment in which there are four objects and a robotic
hand (see Fig. 1). The subjects were told to reach to the object identi�ed by an
announcement of the object. Each subject performed 16 reaching trajectories.
The position of the objects are assumed to be known a priori, but the position
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of the hand is obtained using depth sensor and a particle �lter tracker from the
PCL library [49]. After removing the points related to the table from the point
cloud using RANSAC (random sample consensus) algorithm, the points related
to the robotic hand are computed through clustering of the points and choosing
the largest particle set. Later, particle �lter algorithm is used to �nd the best
match from the point cloud to the initially found cluster. The camera sees the
table from top. The tracker was calibrated during the initialization of the system
by putting it in a known position with respect to the Calibration April Tag [40]
(shown in Fig. 1). The order of tasks was chosen based on a 4 × 4 balanced
Latin square [55] to nullify order e�ects. The PF intention inference algorithm
was then used o�ine using the real data to obtain results. Our PF algorithm
produces inferred item and time-to-arrive at each time instance. The data were
also used to train and test the HMM through k-fold cross-validation. The HMM
algorithm only produces the inferred item and not the time-to-arrive. All the
reported performance measures are averages over all folds.

3 Results

Our data consists of 10 subjects performing the tasks, 16 reaching trajectories
each subject, 160 reaching trajectories overall. A sample hand trajectory for
reaching to objects is depicted in Fig. 4. The item regions are also depicted. The
data obtained from the users is segmented using a Matlab GUI so that each
data sample only contains a single reaching trajectory, and user intent is known
for each segment. We have used Matlab for implementation of the PF algorithm
and Python with hmmlearn [1] and scikit-learn [43] modules for implementation
of the HMM method.

Before feeding the input data to the PF inference engine, we passed the
tracking information through a moving average �lter with a window size equal
to 10 to �lter out high-frequency noises. The hyper-parameters of the PF method
is selected through trial-and-error to be: number of particles M = 100, number
of particle �lter iterations N = 10, decaying factor λ0 = 0.99, number of points
in extension construction T = 20, and number of models in GMM Q = 5. A
sample inference plot for the PF is depicted in Fig. 5. The di�erent regimes
of motion (�outwards", �parallel", and �inwards") are also color-mapped in the
�gure.

The PF algorithm takes T+Q = 25 timesteps before making its �rst inference
(shown as the white �none� region in Fig. 5). For fair comparison, this portion
of data was not counted in the accuracy measurements of either PF and HMM
methods. The classi�cation error is computed on three di�erent bases, the whole
signal (100%), last 75% part of the signal, and last 50% part of the signal. Since
the running time of each sample was di�erent from others, we normalized each
sample with respect to the number of data points in that sample in order to
have a fair overall average.

The error of the time-to-arrive as an output of the PF algorithm was mea-
sured by comparing the Root Mean Square Error (RMSE) between estimated
time-to-arrive and true time-to-arrive of the motion. The true time-to-arrive at
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Fig. 4: A real sampled data. In this sample data, the subject reaches to four
objects based on a speci�c order, and then retracts to the rest position. The
reaching trajectory towards the third object is marked red as an example. The
regions for item weight functions around objects are also shown.

time t was assumed to be linearly set by tf−t, where tf is the time that subject's
hand reaches the object, i.e. the overall reaching duration. The normalized RMSE
of the time-to-arrive based on the same three bases are RMSE100% = 25.7%,
RMSE75% = 19.6%, and RMSE50% = 14.8%.

For the HMM, 5-fold cross-validation was used for more accurate evaluation
of performance. Also, the HMM was trained on di�erent feature combinations
(25) within a range of number of Markov states NM ∈ {1, .., 42}. For the moving

average in (2)O[κ]
t , the window size is set equal to 10 similar to the moving average

of the PF method. Each model was trained with NB = 15 di�erent initializations
and the highest-score model was selected. The error plots for di�erent feature
sets for the HMM algorithm is depicted in Fig. 6. According to the results, the
(3)O[κ]

t feature set is chosen with a number of Markov states NM = 4 as the
best result. Note that among models with similar performance the simpler one
is preferred due to better generalization characteristics.

The confusion matrices of both PF and HMM (the chosen con�guration)
methods are depicted in one plot for easy comparison in Fig. 7.

4 Discussion

4.1 Particle �lter method

Our results indicate that the proposed particle �lter method can both classify
items and infer time-to-arrive with acceptable accuracy and error, respectively.
The accuracy improves over time as expected, and it particularly works very
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(a) item inference

(b) time-to-arrive

Fig. 5: Sample inference for one of the data samples.
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(a) Error plot for feature set (1)O[κ]
t (b) Error plot for feature set (2)O[κ]

t

(c) Error plot for feature set (3)O[κ]
t (d) Error plot for feature set (4)O[κ]

t

Fig. 6: Error plots for di�erent feature sets (25) to be used with the HMM
method. Both train and test errors are plotted on the same 100%, 75%, and
50% bases.

well in the last 75% of the trajectory. It is worth noting that at the very end of
the hand trajectory the inference algorithm performs almost perfect due to the
usage of items weight function Wb instead of the trajectory weight function Wr.

The accuracy for classifying items 2 and 3 is observed to be lower than
items 1 and 4. This is because of the fact that items 1 and 4 are located at the
boundaries, so are easier to infer.

It should also be noted that our model for time-to-arrive and trajectory
weight functions do not include human trajectory models whatsoever and is
rather based on heuristics for inferring the intention. In this paper we have
emphasized more on a framework for multimodal intention inference rather than
modeling individual cues per se. The algorithm also implies that the results
might be improved by adding cues for more accurate inference.

For the PF algorithm to work in real-life, the implementation should be
optimized for real-time inference. Due to the independence of particles, parallel-
processing can readily be used for calculating particles' weights in parallel. More-
over, the moving average �lter used for �ltering the signal's noise may not be a
good candidate for real-time applications, as it may incur very high phase lags
in the signal, speci�cally with the current used window size. Although phase
lags may not be completely removed from the �ltering process unless the �lter
is memoryless, they can be minimized by optimizing the �lter.

In the proposed PF algorithm, we constrain the intention inference to a plane.
If the setting of objects is di�erent, this method needs modi�cations to work.

Using time-to-arrive to modulate grasp types can be viewed very similar to
the simultaneous and proportional (S/P) control paradigm versus on/o� con-
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(a) Particle �lter method (b) Hidden Markov model

Fig. 7: Confusion matrices for the item inference by both PF and HMM methods.
Confusion matrix of the HMM is computed over the test set while the confusion
matrix of the PF method is computed over the whole dataset. The confusion
matrices are depicted on the same 100%, 75%, and 50% bases.
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trol paradigm which is normally resulted from classi�cation-based EMG pattern
recognition [6,28]. In S/P control, the activation level of several degrees of free-
dom can be inferred simultaneously proportional to the degree of activation,
which helps with a human-like motion [21, 22, 25, 29, 48, 56]. S/P control sug-
gests smooth motions which do not su�er from mis-classi�cations of the pattern
classi�ers as severely as an EMG classi�er totally mis-classifying a motion.

4.2 Hidden Markov model

In this paper, we have proposed HMM to infer intended object and not the
time-to-arrive, as compared with the PF method. HMM is mostly suitable for
classi�cation tasks; however, there are variants like HMMR [15] that can be used
for regression tasks and thus inferring time-to-arrive as well.

The feature sets used for testing the HMM show that (3)O[κ]
t (25), i.e. the

observation featured with both the relative hand positions and the �rst order
di�erence of it, performs the best. Interestingly, when hand position is �ltered

using moving average ((2)O[κ]
t ), the performance is degraded as compared to the

un�ltered hand position ((1)O[κ]
t ). It could be because of the fact that moving

average is removing some necessary information required by the HMM, so the

performance is decreased. It should also be noted that (4)O[κ]
t has the worst

performance. That could be due to the fact that this feature set is optimized for
translational invariance which is not a desirable property for this problem.

The results for intent inference of our HMM method (in its best setting, i.e.

using (3)O[κ]
t feature set) shows inferior performance to our PF method. That

could be partially because of the fact that we have highly engineered features
in the PF method (like the �rst and second order extension curves) that are
missing from the HMM features. However, one could legitimately expect that
the HMM performance becomes better by adding more engineered features like
those of the PF method.

It should be noted, that just like the PF method, the HMM method improves
in performance as greater portions of the signal is revealed to the algorithm (see
Fig. 7). This behaviour is quite expected as greater parts of the input signal
reveal more information about human intent.

In the proposed HMM method, as well as the PF framework, no ways are
proposed to detect the onset of a motion towards an object. One may use EMG
activation level for detection of the onset of a reaching trajectory or use thresh-
old models [27] with the HMM method. Threshold models work by adjusting an
adaptive threshold which shows the minimum amount of con�dence we should
have in a class in order to classify a motion within that class, thus safely dis-
carding unrecognized patterns.

Both the PF and HMM methods provide a task-based training versus a user-
based training approach. Methods working by relying on user hand's trajectory
have shown to provide a controlling framework without need to calibration [31].
In other words, the two proposed methods may be more reliably transferable from
user to user as they do not rely on the highly variable EMG signals. However,
our methods are limited to doing a certain task.
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Fig. 8: Graphical model of the PF and HMM methods. Both methods have a
latent variable Xt which is only observable through system observations Zt.

Technically, both PF and HMMmethods enjoy the same underlying graphical
models as depicted in Fig. 8. The di�erence, however, is that in HMM all latent
states are one-hot vectors with multinomial probability distributions. Each one-
hot vector represents the active state at time t in the underlying Markov model.
In the PF method, on the other hand, the latent variables are continuous random
variables with a distribution determined by the particles. In the PF method, we
are interested in the posterior distribution of latent states given the observations,
while in the HMM we do not really care about the values of the latent states
but the likelihood of an observation given the model parameters.

4.3 General points

Although the proposed algorithms assume no priors on the user intent, our
experimental data does so. For instance, in the experiment we are assuming
user intent cannot change during the reaching trajectory, and that, spatially,
the user intent is placed somewhere on the object. For complex scenarios where
the user intent might change while reaching to objects, the algorithms may still
work, but as there are no ground-truth solutions available, it is hard to judge
the performance of the algorithms in those cases.

In our experimental study, we assumed that we know the objects loca-
tions/a�ordances. In real-life this is usually not the case. To obtain object loca-
tions/a�ordances, assistive perception systems may be adopted to infer objects'
locations/a�ordances.

Part of the error and noise is in�icted by the tracking system on the in-
tention inference algorithms. The tracking system output has bias and noise.
To improve tracking system output, one would use multiple depth cameras for
tracking. Integration with other sensors like IMUs can be helpful as well. The
algorithm used for doing tracking is another aspect worth improvement. Cur-
rently, the particle-�lter based tracker used from the PCL library [49] cannot
adapt itself to fast target movements above a certain velocity. That is why we
have constrained ourselves to slow hand motions. Slow hand motions may not
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be simply a scale of the normal fast hand motions, and this may lead to another
source of error. However, the algorithm proposed here assumes very little about
the kinematics of the hand trajectory and may still be used with faster motions
without restrictions.

While we assumed a controlled smart environment for an amputee's work-
place, we may still generalize this paper to more regular usage by using a head-
mounted camera instead of an overhead camera. With smart glasses gaining
more and more popularity [13], having a head-mounted camera is becoming a
practical and valid assumption. Since the proposed algorithm relies on hand po-
sition information from the camera and not the camera position as such, it can
be modi�ed to include such cases.

Acceptance of new enabling technologies by patients has always been a chal-
lenge for researchers. Studies show that the rejection rate of electric upper limb
prostheses di�ers from about 35% for children to about 23% for adults [9]. It is
hard to discuss the rejection rate of the proposed method without actual tests by
patients, in both controlled and real-life environments, specially over long peri-
ods of time. The proposed methods do not require extensive training by patients
before use and are more task-oriented rather than user-oriented, which can be
considered as an advantage by users doing activities in prede�ned environment.

5 Conclusion

In this paper, we proposed two methods for intention inference for interaction
between human and a robotic prosthetic hand. The particle �lter algorithm
can predict which object the user is intending to reach and how much time is
remaining before hand reaches the object. The time-to-arrive can then be used
for �nger trajectory planning so that they have a smooth reach-to-grasp motion.
The hidden Markov model, on the other hand, only predicts which object the
user has intended.

The PF algorithm also provides a general multimodal framework for incor-
porating several cues through weight functions. The weight functions come from
di�erent sources of information that may imply user intent. In this paper, by
using heuristic weight functions based only on trajectory of the user hand we
could reach an accuracy as high as 91.3%. The accuracy of the HMM was 82.2%,
as a baseline model.

Generalization of both methods (PF and HMM) to intention inference in
cluttered environments remains a task for the future. Currently both algorithms
depend on prior knowledge about object positions. Removing known object po-
sition priors from the algorithm is another future task. Using the HMM model
for incremental learning also seems a promising path to follow.
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