
International Journal of Graph Computing
Vol. 1, No. 1 (2020) 25-38
c© KS Press, Institute for Semantic Computing Foundation
DOI: 10.35708/GC1868-126722

Algorithms for Work�ow Satis�ability Problem with

User-independent Constraints?

Gregory Gutin1 and Daniel Karapetyan2

1 Roayl Holloway University of London, Egham, Surrey, UK
g.gutin@rhul.ac.uk

2 University of Essex, Colchester, UK
daniel.karapetyan@gmail.com

Received (10/01/2019)
Revised (01/15/2020)
Accepted (02/28/2020)

Abstract. The Work�ow Satis�ability Problem (WSP) is a problem of
interest in access control of information security. In its simplest form,
the problem coincides with the Constraint Satis�ability Problem, where
the number of variables is usually much smaller than the number of val-
ues. Wang and Li (ACM Trans. Inf. Syst. Secur. 2010) were the �rst
to study the WSP as a problem parameterized by the number of vari-
ables. Their paper initiated very fruitful research surveyed by Cohen,
Crampton, Gutin and Wahlström (2017). In this paper, we overview
more recent WSP algorithmic developments and discuss computational
experiments performed on two new testbeds of WSP instances. These
WSP instances are closer to real-world ones than those by Karapetyan
et al. (JAIR 2019). One of the two testbeds is generated using a novel
iterative approach for obtaining computationally hard WSP instances.

Keywords: Work�ow Satis�ability Problem; Unser-independent Constraints;
Fixed-parameter Tractability.

1 Introduction

The Work�ow Satis�ability Problem (WSP) is a problem of interest in access
control of information security. Its instance is de�ned by a partially ordered list
of steps required to be performed by users subject to certain authorizations and
constraints. Our aim is to decide whether all steps can be assigned to users

? This paper is an extended version of a conference paper [12]. The main addition is
Section 5 where we discuss computational experiments performed with two testbeds
which contain instances that are closer to real-world ones than those used in [15].

26 Gutin and Karapetyan

such that all authorizations and constraints are satis�ed, i.e., the instance is
satis�able or not. This problem generalizes the well-known Constraint Satis�a-
bility Problem (CSP): CSP variables are non-ordered WSP steps, CSP values
are WSP users, CSP unary constraints are WSP authorizations, and CSP non-
unary constraints are WSP constraints. Thus, the WSP is NP-hard. Wang and
Li [19] observed that usually the number k of steps in WSP is relatively small
and much smaller than the number of users. This led Wang and Li to study the
WSP parameterized by k. Their �rst aim was to determine whether the WSP
parameterized by k is �xed-parameter tractable (FPT), i.e., can be solved by an
algorithm of running time O(f(k)N c), where f is a computable function in k
only, N is the size of the problem and c is a constant. An algorithm of running
time O(f(k)N c), often denoted by O∗(f(k)) to hide not only constant factors
but also polynomial ones, is called an FPT algorithm. (For excellent, recent
introductions to parameterized algorithms and complexity, see [8] and [9].)

Wang and Li [19] proved that the WSP is W[1]-hard implying that it is highly
unlikely to be FPT (it is widely believed that the parameterized complexity
classes FPT and W[1] do not coincide). Then they considered the WSP restricted
to simple constraints (with no restrictions on authorizations) and proved �xed-
parameter tractability in that case. Cohen, Crampton, Gagarin, Gutin and Jones
[2] introduced a wide set of constraints called user-independent (UI) constraints
(such constraints do not depend on identity of users) and proved that the WSP
with only UI constraints (with no restrictions on authorizations) is FPT. All
constraints considered by Wang and Li [19] and many other WSP researchers
are UI; in fact, all constraints listed by American National Standards Institute in
[1] are UI. Cohen et al. [3] introduced and studied an algorithm for the WSP with
only UI constraints, which is FPT but of exponential space in k. Karapetyan,
Parkes, Gutin and Gagarin [15] introduced another FPT algorithm for the WSP
with only UI constraints, which is of polynomial space and much more e�cient
in practical computing than that in [3]. A key ingredient of the algorithm of
Karapetyan et al. is the use of maximum matchings in specially constructed
bipartite graphs to decide on authorizations.

Note that while the algorithms Cohen et al. and Karapetyan et al. are of run-
ning time3 O∗(2k log k), in practical computing the latter is much more e�cient
than the former. In fact, the time O∗(2k log k) is likely to be optimal: Cohen et
al. [2] proved that unless the Exponential Time Hypothesis (ETH) fails, there
is no algorithm of running time O∗(2o(k log k)) for the WSP with UI constraints;
Gutin and Wahlström [11] showed that unless the Strong ETH fails, there is no
algorithm of running time O∗(ck log k) for any constant c < 2 for the WSP with
UI constraints only.4

The rest of the paper is organized as follows. In the next section we give a
formal de�nition of the WSP, UI constraints and other related notions. Section 3

3 All logarithms in this paper are of base 2.
4 The ETH claims that 3-SAT with n variables cannot be solved in time O(2o(n)) [13].
The Strong ETH claims that SAT with n variables cannot be solved in time O(cn)
for any c < 2 [14].

Work�ow Satis�ability Problem 27

is devoted to describing a basic version of the algorithm of Karapetyan et al.
and an overview of computational experiments with the algorithm and its `com-
petitors', the algorithm of Cohen et al. and Pseudo-Boolean and CSP solvers.
In Section 5, we discuss new computational experiments. They are performed
with the WSP instances produced by two novel instance generators. Results on
the WSP with UI constraints, some of which (as well as authorizations) can be
`soft' (i.e. allowed to be falsi�ed) are brie�y overviewed in Section 6.

2 Work�ow Satis�ability Problem

In its basic form, the WSP is de�ned as follows: We are given a set S of steps, a
set U of users, a set A(s) ⊆ U of unary constraints that determines which users
can perform step s, and a set C of non-unary constraints over S. Our aim is to
decide whether there is a function (called a plan) π from S to U such that all
authorizations are satis�ed (π is authorized) and all constraints in C are satis�ed
(π is eligible). If π is both authorized and eligible, then π is called valid.

A constraint is a pair c = (L,Θ), where L ⊆ S and Θ is a set of functions
from L to U : L is the scope of the constraint; Θ speci�es those assignments of
elements of U to elements of L that satisfy the constraint c. In practice, the
elements of Θ are not explicitly de�ned; usually the members of Θ are de�ned
implicitly for di�erent constraint types. Following WSP literature, we assume in
this paper that every WSP constraint under consideration can be checked in time
polynomial in the numbers of users and steps. Also, following WSP literature
and the WSP de�nition above, only non-unary constraints, i.e., constraints with
scope of size at least two are called constraints; the unary constraints are called
authorizations.

A constraint (L,Θ) is user-independent (UI) if whenever θ ∈ Θ and ψ :
U → U is a permutation then ψ ◦ θ, the composition of the two functions, also
belongs to Θ. In other words, UI constraints do not distinguish between users.
Throughout this paper, we will use the following two types of UI constraints:
an at-most-p-out-of-q constraint (T,≤ p) (the steps of T can be assigned to at
most p users, |T | = q), and an at-least-p-out-of-q constraint (T,≥ p) (the steps
of T can be assigned to at least p users, |T | = q) In particular, the well-known
constraint AllDi�(T) is (T,≥ |T |).

Note that while the order of steps is irrelevant in the WSP in the basic form
with only UI constraints, in more advanced models of WSP it is no longer the
case (see e.g. [7]).

Figure 1 shows a simple, illustrative example for purchase order processing
introduced in [4]. As shown in Part (a), in the �rst two steps of the work�ow, the
purchase order is created and approved (and then dispatched to the supplier).
The supplier will submit an invoice for the goods ordered, which is processed by
the create payment step. When the supplier delivers the goods, a goods received
note (GRN) must be signed and countersigned. Only then may the payment be
approved and sent to the supplier.

Part (b) shows constraints to prevent possible fraudulent use of the purchase
order processing system. In our example, these constraints restrict the users

28 Gutin and Karapetyan

s1 create purchase order

s2 approve purchase order

s3 sign GRN

s4 create payment

s5 countersign GRN

s6 approve payment

(a) Tasks

s1

s2

s3 s4

s5 s6

=

6=

6=

6= 6=

(b) Constraints

Fig. 1: A simple constrained work�ow for purchase order processing

that can perform pairs of steps in the work�ow: the same user cannot sign and
countersign the GRN, for example. There may also be a requirement that some
steps are performed by the same user. In our example, the user that raises
a purchase order is also required to sign for receipt of the goods. Clearly, all
constraints of the example are UI.

To complete a WSP speci�cation in this example, we introduce a set of users
U = {ui : i = 1, 2, . . . , 8} and describe authorization lists: A(s1) = {u1, u2},
A(s2) = {u2, u3}, A(s3) = {u1, u3}, A(s4) = {u3, u4}, A(s5) = {u3, u4, u5, u8}
and A(s6) = {u5, u6, u7}. It is not hard to verify that the following plan π : S →
U is valid: π(s1) = π(s3) = u1, π(s2) = u2, π(s4) = u4, π(s5) = u3, π(s6) = u5.

3 Pattern Algorithms

The algorithms below were introduced in [15].

3.1 Basic Pattern Algorithm

Both the algorithm of Cohen et al. [3] and Karapetyan et al. [15] are based on the
concept of a pattern introduced in [2]. A pattern is a partition P = {S1, . . . , Sp}
of S into subsets S1, . . . , Sp (S1 ∪ · · · ∪ Sp = S and Si ∩ Sj = ∅ for every i 6= j)
called blocks such that every step in each Si is assigned to the same user, but
steps in di�erent Si's are assigned to di�erent users. For a plan π : S → U and
T ⊆ S, let π(T) = {π(t) : t ∈ T}. A plan π corresponds to P if π(Si) = {uji} for
each i = 1, . . . , p such that ij 6= iq for every 1 ≤ j 6= q ≤ p. A pattern is valid if
there is a corresponding plan which is valid.

The basic pattern algorithm consists of generating all di�erent patterns one
by one (two patterns are the same if their blocks coincide) and for each generating
pattern checking whether all constraints and authorizations are satis�ed. Note
that the number of di�erent patterns equals to the k'th Bell number Bk ≤ k!.

To decide whether all UI constraints are satis�ed, we can assign every block
a di�erent arbitrary user and check each UI constraint in polynomial time (as we
assumed earlier). To decide whether all authorizations are satis�ed we construct
a bipartite graph BP whose left part vertices are blocks Si of the pattern and the
right part vertices are the users. There is an edge in BP between Si and uj if all
steps of Si are authorized to be performed by uj . Observe that all authorizations
are satis�ed if and only if BP has a matching saturating its left part. The basic
algorithm stops whenever either a valid pattern is found (then the instance is

Work�ow Satis�ability Problem 29

satis�able) or all patterns have been generated and none are valid (then the
instance is unsatis�able).

Since Bk ≤ k! = O(2k log k), it is not hard to see that the running time of the
basic pattern algorithm is O∗(2k log k). Since we generate patterns one by one,
the algorithm requires only polynomial space.

3.2 Pattern Backtracking Algorithm

The theoretical running time of the basic pattern algorithm and, as we will see
below, the pattern backtracking algorithm are O∗(2k log k) and thus are very
likely to be optimal, as we stated in Section 1. However, in practical computing
backtracking allows us to usually avoid generating all di�erent patterns for un-
satis�able instances and many patterns for satis�able instances, and as a result
usually solve the instances faster and for larger values of k.

To use backtracking, we generalize the notion of a pattern as follows. A
partial pattern is a partition of some subset T of S. We can decide whether a
partial pattern Q = {T1, . . . , Tq} can potentially be extended to a valid pattern
by deciding whether all constraints with scopes being subsets of T are satis�ed
and there is a matching saturating the left part of a bipartite graph BQ whose
left side vertices are blocks Ti of Q and the right side vertices are the users;
the edges of BQ are de�ned in the same way as those of BP in the previous
subsection.

If a partial pattern Q can potentially be extended to a valid pattern, the
algorithm adds a new step s to the partial pattern by either creating a new
block {s} or adding s to one of the blocks of Q. For an illustration, see Fig. 2.

{} {
{s1}

}
{
{s1, s2}

}

{
{s1}, {s2}

}

{
{s1, s2, s3}

}

{
{s1, s2}, {s3}

}

{
{s1, s3}, {s2}

}

{
{s1}, {s2, s3}

}

{
{s1}, {s2}, {s3}

}
Fig. 2: Illustration of the backtracking mechanism.

It is important to use an e�cient procedure which chooses a new step to
add to the partial pattern. Such a procedure depends on the types of constraints
used in the WSP instances under consideration. For such a procedure and further
particulars of the algorithm, see Karapetyan et al. [15].

To bound the running time of the pattern backtracking algorithm, observe
that the number of partial patterns on the set {s1, . . . , sk} is at most twice the

30 Gutin and Karapetyan

number of patterns on {s1, . . . , sk}. Indeed, every partial pattern Q, which is
not a pattern, can be completed to a pattern by adding a new block containing
all steps in {s1, . . . , sk} but not in Q. Thus, the running time of the pattern
backtracking algorithm is O∗(2k log k).

4 WSP Formulations for SAT Solvers

To computationally evaluate the pattern backtracking algorithm, Karapetyan et
al. [15] compared it with Pseudo-Boolean and CSP solvers. Such solvers require
appropriate formulations and, in the rest of this section, we very brie�y discuss
some formulations for SAT solvers.

To solve the WSP using a Pseudo-Boolean solver SAT4J [17], Wang and
Li [19] and Cohen et al. [3] considered a pseudo-Boolean formulation of WSP
which is based on binary variables xs,u such that xs,u = 1 if and only if user u is
assigned to step s. We will call such a formulation an `ordinary' pseudo-Boolean
formulation of WSP. For only not-equals constraints (si 6= sj) (i.e. si and sj
must be assigned di�erent users), we have the following WSP Pseudo-Boolean
formulation: ∑

u∈U xs,u = 1 ∀s ∈ S,
xs,u = 0 ∀s ∈ S and ∀u ∈ U \A(s),

xsi,u + xsj ,u ≤ 1 ∀ not-equals (si 6= sj) and ∀u ∈ U.

Karapetyan et al. [15] introduced a more computationally e�cient pseudo-
Boolean formulation. We may call it an `FPT' formulation as alongside variables
xs,u's, it uses `FPT variables'Ms,s′ such thatMs,s′ = 1 if steps s, s′ are assigned
the same user and Ms,s′ = 0, otherwise. The M -variables are of interest due to
the following:
Theorem [15] On solving an instance of the WSP, the decision variables M are
su�cient to encode any UI constraint.

4.1 Computational Experiments in [15]

Karapetyan et al. [15] carried out computational experiments to compare the
pattern backtracking algorithm with the algorithm of Cohen et al. [3] and other
solvers. The experiments were performed on a computer with Intel Xeon CPU
E5-2630 v2 (2.6 GHz) and 32 GB RAM. Hyper-threading was enabled, but
Karapetyan et al. never ran more than one experiment per physical CPU core
concurrently, and concurrency was not exploited in any of the tested solution
methods.

The WSP instances used in [15] were generated as follows. In the variable-k
study, the number of steps was 18 ≤ k ≤ 58 and the number of users was n = 10k
(also the n = 100k case as well as the �xed-k variable n case were studied and
the results were similar). The authorizations were obtained as follows: for each
u ∈ U , �rst choose bu = |A−1(u)| randomly and uniformly from {1, . . . , bk/2c},
then A−1(u) from all subsets of S of size bu. The constraints used were k at-
least-3-out-of-5 constraints, k at-most-3-out-of-5 constraints and e not-equals

Work�ow Satis�ability Problem 31

constraints, where e is chosen such that the probability of (S,U,C,A) being
satis�able is approximately 0.5. (They were showed to be the hardest instances
in [15] due to WSP phase transition, see also Section 5.1 for similar results.)

The following solvers were compared:

PBT Pattern backtracking algorithm of Karapetyan et al. [15] (coded in C#);
PUI The algorithm of Cohen et al. [3] (coded in C++);
UDBP-R SAT4J using `ordinary' pseudo-Boolean formulation of WSP in the

resolution proof system mode (cutting plane mode was much worse);
PBPB-R SAT4J using `FPT' pseudo-Boolean formulation of WSP in the res-

olution proof system mode;
PBPB-C SAT4J using `FPT' pseudo-Boolean formulation of WSP in the cut-

ting plane mode;
CP-SAT CP-SAT from Google OR-tools [10] using a CSP formulation of WSP.

For each pair (k, n), 100 experiments were run. The clear winner was PBT
with runner-ups CP-SAT and the best of PBPB-R and PBPB-C. In particular,
for k = 50, PBT took median time 100 sec. for unsatis�able instances. CP-SAT
was 1-2 orders of magnitude slower than PBT and used much more memory.
What Karapetyan et al. found particularly remarkable was that CP-SAT used
an `ordinary' CSP formulation of WSP, not a special `FPT' one, but never-
theless displayed an FPT-like behaviour. Karapetyan et al. hypothesized that
the likely explanation was that CP-SAT �rst reduced the CSP formulation to a
SAT formulation, which was `FPT'-like, and then solved the corresponding SAT
problem.

5 New Computational Experiments

An important part of the computational experiments in [15] was a phase transi-
tion study. Karapetyan et al. demonstrated that the instance generator described
above leads to WSP phase transition (PT), a phenomenon when the properties
of the instances sharply change when a parameter crosses a threshold value. In
[16], the authors selected the number e of not-equals constraints for that param-
eter. This parameter has immediate impact on the harder part of the problem,
i.e. the part related to the UI constraints. At the same time, the authors demon-
strated that the authorisations in the benchmark instances are relatively loose
and it is typical that an instance has only a few eligible patterns (i.e. patters
satisfying all the constraints) but millions of valid plans (i.e. plans that satisfy
all the constraints and authorisations).

The authorisation density of a WSP instance (S,U,A) is |A|/(|S||U |), where
|A| is the total number of authorisations over all the users. In Section 5.1, instead
of varying the parameter e, we vary the authorisation density. The reason for
doing so is that it is closer to real-world situations: authorisations can change
more frequently than constraints due to changes related to the set of users (the
set U of users may change itself and/or the authorisations for some users may
change, too, e.g. due to new security clearances or quali�cations for users). Also
note that all the real-world WSP instances considered in [15] have �xed con-
straints and varied authorisations. (Karapetyan et al. considered all real-world

32 Gutin and Karapetyan

WSP instances publicly available from the literature. Unfortunately, they all are
computationally easy and thus of no interest in this paper.)

In Section 5.2 we give a completely new approach that leads to another
testbed with even harder instances. The results of computational experiments
with the two new testbeds are reported in Sections 5.3 and 5.4, respectively.

5.1 Phase Transition by Adjustment of Authorisation Density

We �rst give an instance generator, which we call Authorisation Density Adjust-
ment Generator (ADAG), that produces PT instances by adjustment of autho-
risation density.

Figure 3 shows how authorisation density a�ects the number of satis�able
instances and also the running time of the PBT solver. Each reported running
time is the median of the running times in 100 experiments conducted with
100 instances generated with the same parameters but di�erent random number
generator seed values. One can observe that adjustments of this parameter lead to
behaviour typical for phase transition. The under- and over-subscribed instances
are much easier to solve than the instances near the threshold, and the change
from unsatatis�able (unsat) to satis�able (sat) instances is very rapid.

10−3

10−2

10−1

100

R
u
n
n
in
g
ti
m
e,
se
c

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

Authorisation density, %

S
a
t
in
st
a
n
ce
s,
%

Fig. 3: Phase transition observed in variation of the authorisation density. The
red dashed line shows the number of sat instances and the solid blue line shows
the running time of PBT. The number of steps is k = 40 and the number of
users is n = 400.

For a given k and n, ADAG �xes the number of not-equals constraints to k,
at-most constraints to k and at-least constraints to k. Then it �nds the authori-
sation density that gives an even split between sat and unsat instances. Then the
obtained authorisation density is used to produce instances for this combination
of k and n.

Work�ow Satis�ability Problem 33

5.2 Phase Transition with Maximised Authorisation Density

The ADAG instance generator produces hard instances as evident from Fig-
ure 3. In this section we give a new instance generator, which we call Maximised
Authorisation Density Generator (MADG), capable of generating even harder
instances. Speci�cally, it implements a heuristic that maximises the number of
authorisations while the instances remain in the PT region. By maximising the
number of authorisations, we reduce the amount of pruning and propagation
possible within the solvers and hence make the instances harder. In order to re-
main in the PT region, the generator guarantees that if the generated instance is
sat, then removing a single authorisation can make it unsat, and if the generated
instance is unsat, then adding a single authorisation can make it sat.

To summarise, MADG is both more accurate in placing the instances in the
PT region and also maximises the number of authorisations which, we expect,
will make the instances more challenging.

MADG works as follows.

1. Produce a PT instance using ADAG instance generator described in Sec-
tion 5.1.

2. If the instance is sat, randomly select a user authorised to at least two steps,
randomly select one of the steps to which this user is authorised and remove
this authorisation. Repeat this step as long as the instance remains sat.

3. (Note that at this point the instance is guaranteed to be unsat.) Randomly
select a user authorised to less than all steps, randomly select a step to which
this user is not authorised and add the corresponding authorisation. Repeat
this step as long as the instance remains unsat.

4. (Note that at this point the instance is guaranteed to be sat.) Randomly
select a user authorised to at least two steps, randomly select one of the steps
to which this user is authorised and remove this authorisation. If the modi�ed
instance is still sat, backtrack (i.e. restore the removed authorisation) and
repeat this step. If the modi�ed instance is unsat, go to Step 3 or terminate
if the prescribed number of iterations of the loop formed by Steps 3 and 4
have been performed.

Observe that Step 4 is guaranteed to �nd a single authorisation whose re-
moval will turn the instance unsat; indeed, removing the last authorisation added
in Step 3 will do exactly that. There is no guarantee that Steps 2 and 3 will ter-
minate, however, considering that the initial instance is in the PT region, it is
highly unlikely that they will never terminate.

5.3 Computational Experiments with ADAG Instances

The experiments were conducted on a Dell XPS 15 laptop with Intel Core i7-
8750H 2.2 GHz CPU and 32 GB RAM.

We expect that, compared to the standard instances, ADAG instances will
have more challenging embedded matching problems. This will give advantage
to the PBT algorithm and PBPB (CP) � the solvers that are guaranteed to
e�ciently solve the matching problems. On the other hand, tighter authorisations

34 Gutin and Karapetyan

will lead to optimal branching that involves user assignments or at least takes
user authorisations into account; only the o�-the-shelf solvers are capable of
doing that whereas PBT has a rigid branching heuristic.

Our computational results are reported in Figure 4. Each reported running
time is the median of the running times in 100 experiments with 100 instances
generated with the same parameters except for the random number generator
seed value.

20 25 30 35 40 45

10−3

10−2

10−1

100

101

102

103

Number of steps k

R
u
n
n
in
g
ti
m
e,
se
c

PBT

PBPB (Res)

PBPB (CP)

CSP

Fig. 4: Evaluation of the solvers on the ADAG instances.

The results are very close to those reported in [15]. (Note that we used a
di�erent machine for the experiments in this paper, but we expect that the
single-threaded performance of the two machines is similar.) It could be that
the two e�ects discussed in the beginning of this section cancel each other out.
It could also be that the authorisations are not tight enough to make the user
assignments challenging. This hypothesis led us to designing and experimenting
with the second instance generator, MADG.

5.4 Computational Experiments with MADG Instances

Since generation of the MADG instances is expensive, we restricted the number
of iterations of MADG in order to produce a �gure similar to Figure 4. Speci�-
cally, we used the instances obtained after 10 alternations between sat and unsat
instances within MADG. Compared to the ADAG instances, this approach con-
siderably increased the authorisation density but still the running times of the
solvers were not much una�ected.

For our next experiment, we allowed more iterations within MADG. We then
plotted how the authorisation density a�ects the running time of the di�erent

Work�ow Satis�ability Problem 35

solvers. The results are reported in Figure 5. We used only the unsat instances to
plot this graph, as the running times for the sat instances have higher variance.
It is clear that all the solvers are to some degree sensitive to the authorisation
density. The dependency is approximately linear; linear functions quite closely
approximate each of the datasets. Note that the vertical axis in this plot has
logarithmic scale and as a result linear functions are curved.

We then computed how sensitive each solver is to the authorisation density.
The results are summarised in Table 1.

Time at 24%, sec Time at 36%, sec Ratio

PBT 0.01 0.05 3.6
PBPB (Res) 3.11 5.87 1.9
PBPB (CP) 39.14 308.59 7.9
CSP 5.21 23.13 4.4

Table 1: Summary of how sensitive each of the solvers is to the change of the
authorisation density.

We used the �tted linear functions to estimate the running time of each solver
at authorisation densities 24% and 36% (columns 2 and 3). The last column of
the table gives the ratio between those values for each solver. It turns out that
PBPB (Res) is by far the least sensitive to the authorisation density. In this
sense, it signi�cantly outperforms its competitor CSP. Also, PBPB (CP) is the
most sensitive one. Explaining these results however will require further research.
We also note that PBT is moderately sensitive to the authorisation density. We
assume that this is because it employs heuristics for restricting the set of users
considered for the matching problems, however these heuristics will not be as
e�cient if the number of authorisations is increased. Nevertheless, PBT still
outperforms all the other methods by several orders of magnitude and hence is
not in direct competition with PBPB.

We also conducted experiments with MADG instances obtained by changing
n at a �xed k. The preliminary results were similar to those reported in [15] for
the �xed-k slice, however due to the computational cost of producing MADG
instances we could not complete the experiment and thus we do not report the
details here.

6 Other Research on WSP with UI Constraints

Sometimes a WSP instance cannot be satis�ed, but it would be acceptable to fal-
sify some `soft' constraints especially if they are not falsi�ed `too much', e.g., for
an at-most-3-out-of-5 constraint only four users rather than three are assigned.
Crampton, Gutin and Karapetyan [5] formalized this as follows. For each con-
straint c and plan π, if π satis�es c then wc(π) = 0, otherwise wc(π) > 0 with

36 Gutin and Karapetyan

22 24 26 28 30 32 34 36 38

10−2

10−1

100

101

102

103

Authorisation density, %

R
u
n
n
in
g
ti
m
e,
se
c

PBT

PBPB (Res)

PBPB (CP)

CSP

Fig. 5: Evaluation of how the authorisation density a�ects the running times.
The instances with higher authorisation density were obtained by running more
iterations of MADG. The number of steps is k = 25 and the number of users
is n = 250. Only the unsat instances are selected for this experiment. The solid
lines are linear functions �tted into each dataset.

the actual value of wc(π) depending on how much c is not satis�ed by π. Let
wC(π) =

∑
c∈C wc(π), the weight of all constraints in C for plan π.

Consider, for example, an at-most-r constraint (T,≤ r). Then it is natural
to assume that wc(π) depends only on the number of users assigned to the
steps in T (and the penalty should increase as the number of users increases).
Let π(T) denote the set of users assigned to steps in T . Then wc(π) = 0 if
|π(T)| ≤ r; for plans π and π′, we have wc(π) = wc(π

′) if |π(T)| = |π(T ′)|; and
0 < wc(π) ≤ wc(π

′) if r < |π(T)| ≤ |π′(T)|.
A weighted constraint c is called UI if, for every permutation θ of U , wC(π) =

wC(θ ◦ π). Thus, a weighted UI constraint does not distinguish between users.
Clearly, an at-most-r constraint is UI.

We can also introduce wA(π), which assigns a weight for each plan π with
respect to the authorisation policy. The intuition is that a plan in which every
user is authorised for the steps to which she is assigned has zero weight and the
weight of a plan that violates the policy increases as the number of steps that are
assigned to unauthorised users increases. Now, we can introduce the total weight
of a plan π: w(π) = wC(π) + wA(π) with the aim to minimize it. This problem

Work�ow Satis�ability Problem 37

is called the Valued WSP, analogously to the Valued CSP introduced by
Schiex, Fargier and Verfaillie [18].

Crampton et al. [5] designed an O∗(2k log k)-time algorithm, denoted PBnB,
to �nd the minimum of w(π) when all constrains are UI. Computational exper-
iments in [5] showed that PBnB is superior to MIP solver CPLEX 12.6: while
PBnB solved every instance for k ≤ 30 and a large majority for k = 35 within
one hour, CPLEX 12.6 solved all instances only for k = 20, for k = 35 less than
43%.

Crampton, Gutin, Karapetyan and Watrigant [6] considered a more general
problem: the Bi-objective WSP (BOWSP), where the two objectives are
wC(π) and wA(π), respectively. They proved that computing a Pareto front for
BOWSP is FPT and can be done in time O∗(2k log k), if we restrict our attention
to UI constraints. Computational experiments with the FPT algorithm and one
based on MIP solver CPLEX12.6 demonstrated clear superiority of the FPT
algorithm.

Crampton et al. [6] also studied the important question of work�ow resiliency
and proved new results establishing that known resiliency decision problems
are FPT when restricted to UI constraints. They also proposed a new way of
modeling the availability of users and demonstrated that many questions related
to resiliency in the context of the new model may be reduced to instances of
BOWSP. The new model has probabilistic elements and allows one to estimate
the probability of a valid plan to be completed when, with some probabilities,
users may be unavailable (e.g. due to their absence from work) to perform some
steps.

Acknowledgment

Gutin would like to thank the Leverhulme Trust for supporting his research on
the WSP and related problems.

References

1. American National Standards Institute: ANSI INCITS 359-2004 for Role Based
Access Control (2004)

2. Cohen, D., Crampton, J., Gagarin, A., Gutin, G., Jones, M.: Iterative plan con-
struction for the work�ow satis�ability problem problem. J. Artif. Intell. Res.
(JAIR) 51, 555�577 (2014)

3. Cohen, D.A., Crampton, J., Gagarin, A., Gutin, G.Z., Jones, M.: Algorithms for
the work�ow satis�ability problem engineered for counting constraints. J. Comb.
Optim. 32(1), 3�24 (2016)

4. Crampton, J.: A reference monitor for work�ow systems with constrained task
execution. In: Ferrari, E., Ahn, G.J. (eds.) SACMAT. pp. 38�47. ACM (2005)

5. Crampton, J., Gutin, G., Karapetyan, D.: Valued work�ow satis�ability problem.
In: Proceedings of the 20th ACM Symposium on Access Control Models and Tech-
nologies (SACMAT 2015). pp. 3�13 (2015)

6. Crampton, J., Gutin, G., Karapetyan, D., Watrigant, R.: The bi-objective work�ow
satis�ability problem and work�ow resiliency. Journal of Computer Security 25(1),
83�115 (2017)

38 Gutin and Karapetyan

7. Crampton, J., Gutin, G.Z., Watrigant, R.: On the satis�ability of work�ows with
release points. In: Proceedings of the 22nd ACM on Symposium on Access Control
Models and Technologies, SACMAT 2017, Indianapolis, IN, USA, June 21-23, 2017.
pp. 207�217 (2017)

8. Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer (2015)

9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer Verlag (2013)

10. Google OR-tools (2019), https://developers.google.com/optimization/
11. Gutin, G., Wahlström, M.: Tight lower bounds for the work�ow satis�ability prob-

lem based on the strong exponential time hypothesis. Inf. Process. Lett. 116(3),
223�226 (2016)

12. Gutin, G.Z.: The work�ow satis�ability problem with user-independent con-
straints. In: Proceedings of Graph Computing for Industries 2019 (GC4I 2019).
pp. 1�4 (2019)

13. Impagliazzo, R., Paturi, R.: On the Complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367 � 375 (2001)

14. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512�530 (2001)

15. Karapetyan, D., Parkes, A.J., Gutin, G.Z., Gagarin, A.: Pattern-based approach
to the work�ow satis�ability problem with user-independent constraints. J. AI
Research 66, 85�122 (2019)

16. Karapetyan, D., Parkes, A.J., Gutin, G.Z., Gagarin, A.: Pattern-based approach to
the work�ow satis�ability problem with user-independent constraints (full version).
arXiv 1604.05636 (2019)

17. Le Berre, D., Parrain, A.: The SAT4J library, release 2.2. J. Satisf. Bool. Model.
Comput. 7, 59�64 (2010)

18. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard
and easy problems. In: Proceedings of the 14th International Joint Conference
on Arti�cial Intelligence � Volume 1. pp. 631�637. IJCAI'95, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1995)

19. Wang, Q., Li, N.: Satis�ability and resiliency in work�ow authorization systems.
ACM Trans. Inf. Syst. Secur. 13(4), 40 (2010)

https://developers.google.com/optimization/

	Algorithms for Workflow Satisfiability Problem with User-independent Constraints

