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Abstract. We discuss in this paper some aspects of NKRL, the Narra-
tive Knowledge Representation Language. This is a high-level n-ary con-
ceptual tool specially conceived for the representation and management
of real world, dynamically characterized entities like situations, events
and complex events, actions (e.g., in a robotics context) scripts/scenarios/
narratives etc. After having pointed out some shortcomings of the stan-
dard ontological solutions for dealing with this sort of information, and
having recalled some general characteristics of NKRL (like the addition
of an �ontology of events� to the usual �ontology of objects�), we focus
on the rules/inferential aspects proper to this language. We introduce,
then, the general, formal model of �rule� used in an NKRL context and
we show how this can be appropriately adapted to the setup of advanced
types of inference operations based, e.g., on �analogical� and �causal�
reasoning.

Keywords: Ontologies; binary and n-ary approaches; inference rules and infer-
ence techniques.

1 Introduction

In any real-world domain involving entities that communicate with each other
(robotics for example), one of the basic requirements for being able to create
e�ective applications is the availability of some sort of common vocabulary, sup-
plemented with clear and exhaustive de�nitions of its terms. Access to this vo-
cabulary will ensure common understanding among the di�erent entities, like
humans and robots, involved in a given application. Moreover, it will guarantee
the possibility of a uniform description of the properties/characteristics of these
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entities and of their global context, and facilitates more e�cient data integration
and transfer of information within the application's environment.

Research within the Arti�cial Intelligence (AI) and Knowledge Representa-
tion (KR) domains has identi�ed in �ontologies� and �ontological engineering�
the tools allowing us to create common vocabularies endowed with the above
characteristics. According to a modern computer-science meaning, a consensus
de�nition of ontology says that, �Ontologies represent a formal and explicit spec-
i�cation of a shared conceptualization� [7]. �Conceptualization� refers here to an
abstract model of some phenomenon/situation in the world, where the model
results by the identi�cation of the relevant �concepts� that characterize this par-
ticular phenomenon/situation. �Explicit� and �formal� mean that the type of
concepts used and the constraints on their use are unambiguously de�ned and
that the ontology should be machine-usable. �Shared� signi�es that an ontology
captures consensual knowledge, that is, this knowledge is not private but must
be accepted by a group. In recent times, ontologies have been de�ned and used in
the most di�erent application domain � see, e.g., Section 4 below for information
about some current ontological systems used in a robotics context.

Unfortunately, in spite of some attempts in the past to de�ne general method-
ologies for creating well-formed, completed and shareable ontologies � see, for
example, [5,8,27] � there is at present no agreement on how to achieve this goal.
Any general approach to build up this sort of wide-ranging ontologies should in
fact be capable to take e�ectively into account all the pertinent knowledge actu-
ally needed to implement real world applications. However, when we look at the
existing ontologies, we see that their vast majority are implemented by using,
from a knowledge representation point of view, the so-called �binary� approach.
In this, a concept is de�ned through a set of properties/attributes; when the
concept is instantiated into a concrete individual, each associated property can
only link this individual to another individual or a value, individual1-property-
individual2/value � note that this is also the format of the so-called �RDF-
triples� [13]. This approach is, undoubtedly, wholly justi�ed when the ontologies
to be de�ned concern only the (so-called) �static� entities. These are important
unique notions (�concepts�) � like physical objects, animated entities, social bod-
ies, political theories, university courses, types of illness etc. � that, at a given
point in time, can be de�ned in terms of binary properties and autonomously in-
serted within a hierarchical structure of similar notions/concepts (the ontology).
Their original de�nitions are then enhanced through the grid of implicit/explicit
relationships (essentially, IsA links) with the other terms of the ontology � further
information can also be added making use of natural language (NL) annotations
see, e.g., the de�nitions of the �classes� of the Schema.org initiative [9].

The binary model � a sort of modern reinterpretation of the traditional �ter-
minological� approach � faces, however, important �expressiveness� problems
when the pertinent knowledge to be taken into account includes also some forms
of �dynamic� knowledge. This knowledge concerns, in fact, the use of evolving
structured entities that denote, within a given spatio-temporal context, a co-
herent set of mutual connections between multiple (>2) �static� entities. These
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dynamic entities can correspond to events, situations, actions, behaviors, at-
titudes, scripts, scenarios, narratives etc., and are particularly signi�cant in a
robotics context. A simple example is, e.g., the �purchase relation� that concerns
events where a seller, a buyer, a good, a price, and a timestamp are involved.
In an AAL (Ambient Assisted Living) context, another example concerns a spe-
ci�c case of the �transmission of a message� relation that associates a robot, a
warning message, an elderly person and a timestamp. In all these cases, a simple
representation in form of binary relationships is no more su�cient, and actual
(complex) n-ary relationships must then be used to represent the dynamic knowl-
edge, see the details in Section 2 below. Note that a common misunderstanding
consists in asserting that the de�nition of speci�c n-ary knowledge representa-
tion structures for dealing with dynamic knowledge is not necessary given that
any n-ary relationship can be simply reduced to a set of binary relationships.
This sort of decomposition can be important for very practical problems like stor-
ing e�ciently n-ary relationships into standard databases. However, binary and
n-ary relationships are conceptually irreconcilable, and an n-ary relation cannot
be reduced to the simple addition of binary elements without losing its �deeper
meaning� � it is impossible to reason about, e.g., the possible reasons of a pur-
chase or the context of a warning message without considering the initial event in
its whole conceptual entirety. This is well-known in the AI/KR milieus where the
researchers have tried vainly, for a long time, to transform automatically/semi-
automatically binary representations into n-ary ones; a well-known proposal in
this context is, e.g., [20]. The questionable character and the practical ine�ec-
tiveness of this sort of proposals are described in full in [29].

All the above should make us recognize that the standard Semantic Web
(SW) languages, OWL, OWL 2, SPARQL, SKOS, SWRL etc., the �W3C lan-
guages�, do not represent an optimal solution for representing in formal terms
those �states of a�airs� that imply the presence of dynamic knowledge. Being
based on-top of the binary RDF these languages are, in fact, unable to represent
natively, in a compact and natural way, the n-ary relationships between multi-
ple related entities within a given spatio-temporal framework. In this paper, we
introduce then a knowledge representation tool, the Narrative Knowledge Rep-
resentation Language (NKRL) [32], which is supported by a fully implemented
computer science environment. NKRL has been expressly created to formalize
as accurately as possible and to manage in an integrated e�cient way both those
static and dynamically characterized entities evoked above; in this paper we will
deal, in particular, with the NKRL rule-based inferencing techniques, referring
the reader to other NKRL publications for a complete understanding of this
language.

In the following, Section 2 will be devoted to a short description of the main
conceptual features of NKRL. Section 3 will describe NKRL's inference tech-
niques. Section 4 concerns some comparisons with work related, in some way, to
the speci�c NKRL's approach; Section 5 supplies, eventually, a short �Conclu-
sion�.
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2 A short revue of the main features of NKRL

NKRL innovates with respect to the current ontological paradigms by adding an
�ontology of elementary events� taking in charge, mainly, the dynamic knowl-
edge, to the usual �ontology of concepts� devoted to the representation of the
background static knowledge.

The ontology of concepts is called HClass (hierarchy of classes) in an NKRL
context and includes presently (June 2019) more than 7,000 standard concepts
� �standard� means here that the properties or attributes used to de�ne a given
concept are simply expressed according to the usual binary approach. From a
purely operational point of view HClass � see [32, 43-55, 123-137] � is not so
di�erent, then, from the ontologies that can be built up by using the frame
version of Protégé [19].

The ontology of elementary events is, by contrast, a new sort of hierarchical
organization where the nodes correspond to n-ary structures called �templates�:
their basic structure is depicted by Eq (1). This ontology is then denoted in
NKRL as HTemp (hierarchy of templates). In opposition to the usual onto-
logical function of the static/background notions denoted by the HClass con-
cepts like �human being�, �amount�, �color�, �artefact�, �control room�, �valve�,
�level of temperature� . . . , templates' function concerns the representation in
machine-understandable format of real world dynamically characterized enti-
ties like events, situations, actions, behaviors, scripts, scenarios, narratives etc.
More precisely, they must be conceived as the canonical, formal representa-
tion of general classes of elementary events like �move a physical object�, �be
present in a place�, �having a speci�c attitude towards someone/something�,
�asking/receiving an advice�, etc. � for the sake of simplicity, we group here un-
der the label �elementary event� all the constituent elementary entities of actions,
situations, behaviors, narratives etc. that can be described fully by Eq (1). As
we will see later, these elementary events and their instances can be assembled
in turn into more complex formal dynamic structures.

(Li(Pj(R1a1)(R2a2) . . . (Rnan))) (1)

In Eq (1), Li is the symbolic label identifying (reifying) the particular n-
ary structure corresponding to a speci�c template. Pj is a conceptual predi-
cate. Rk is a generic functional role [36] used to identify the speci�c logico-
semantic function performed by its ��ller� ak, a generic predicate argument,
with respect to the predicate Pj , see the example below. ak is then the par-
ticular predicate argument introduced by the role Rk. When a template de-
noted as Move:TransferMaterialThingsToSomeone in NKRL is instantiated to
provide the representation of a quite simple elementary event like �Bill gives a
book to Mary�, the predicate Pj (MOVE) will introduce its three arguments ak,
JOHN_, MARY_ and BOOK_1 (�individuals�, i.e., instances of HClass con-
cepts) via, respectively, the three functional relationships (Rk roles) SUBJ(ect),
BEN(e)F(iciary) and OBJ(ect). These last specify, then, the function/task/role
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of each of the three individuals with respect to the predicate and, as a conse-
quence, with respect to the global meaning of the (formalized) elementary event.
The global n-ary construction is then rei�ed through the symbolic label Li. The
instances of templates are called predicative occurrences and correspond then
to the representation of speci�c elementary events; note that the same line of
reasoning could be used for an example like �a robot sends a warning message
to an elderly person� see, e.g., [34, 2373].

Note that the use of functional roles in Eq (1) is the most important inno-
vation introduced by NKRL with respect to other n-ary proposals, those in a
�frame� style for example � see Section 4. They allow us, in fact, to obtain a high
degree of accuracy in the representation of the �deeper meaning� of the original
elementary events (actions, situations, behaviors etc.). Note also the importance
of Li in the context of Eq (1)'s symbolism. This label has, in fact, the function
of the �unique internal handle� already proposed by Woods in 1975 [32] to allow
us to manage all the constituents of the formal representation of an elementary
event as a unique and coherent block. This block can, then, be associated with
similar blocks within (potentially very large) consistent conceptual structures.

To avoid the ambiguities of natural language and any possible combinatorial
explosion problem, see [32, 56-61] in this context, both the conceptual predi-
cate of Eq (1) and the associated functional roles are �primitives�. Predicates
Pj pertain to the set {BEHAVE, EXIST, EXPERIENCE, MOVE, OWN, PRO-
DUCE, RECEIVE}, and the roles Rk to the set {SUBJ(ect), OBJ(ect) SOURCE,
BEN(e)F(iciary), MODAL(ity), TOPIC, CONTEXT}. Fig. 1 reproduces a frag-
ment of the HTemp hierarchy that displays the conceptual labels of some tem-
plates included in the Move: and Produce: sub-hierarchies. As it appears from
this �gure, HTemp is structured into seven branches, where each branch includes
only the templates created, according to the general syntax of Eq (1), around
one of the seven predicates Pj admitted by the NKRL language.

Table 1 represents the template Move:TransferMaterialThingsToSomeone (see
also the branch Move:TransferToSomeone in Fig 1) used to produce the pred-
icative occurrence formalizing the elementary event �Bill gives a book to Mary�.
The items (as SOURCE, MODAL, (var2 ) etc. in Table 1) included in square
brackets are optional. HTemp consists presently (June 2019) of more than 150
templates, very easy to specialize and customize, see [32, 137-177]. As we can see
from Table 1, the arguments of the predicate (the ak terms in Eq (1)) are actually
denoted by variables (vari) with associated constraints. These last are expressed
as concepts or combinations of concepts, i.e., using HClass terms. When creating
a predicative occurrence as an instance of a template, the constraints linked to
the variables are used to specify the legal sets of HClass terms that can be sub-
stituted for these variables within the occurrence. In our example, e.g., we must
verify that JOHN_ and MARY_ are HClass instances of individual_person, a
speci�c term of human_being_or_social_body, see the constraints on the SUBJ
and BENF roles of the template of Table 1.
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Fig. 1. Partial image of HTemp, with the Produce: and Move: branches partly un-
folded.
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Table 1. A template of the Move: branch of HTemp.

What described until now illustrates the NKRL solutions to the problem of
providing a complete representation of single elementary events. New problems
arise when, in the context of larger structured/dynamic arrangements like com-
plex events, narratives, scripts, scenarios etc., several elementary events must
be linked through �connectivity phenomena� operators as causality, goal and
indirect speech. In this case, we make use of second order structures created
through rei�cation of the predicative occurrences corresponding to the events to
be associated. The rei�cation is implemented using their symbolic labels (the Li

terms of Eq (1)) according to two important conceptual mechanisms.
The �rst concerns the possibility of referring to an elementary (or complex)

event as an argument of another (elementary) event � the corresponding connec-
tivity phenomenon in natural language terms is the �indirect speech�. An example
can concern an elementary event X where someone speaks about Y, where Y
is itself an elementary event (or a complex event, i.e., a logically-semantically
coherent set of events). The second (more general) mechanism allows us to asso-
ciate together, through several types of connectivity operators, elementary (or
complex) events that, at the di�erence of the previous case, can still be regarded
as independent entities. As an example, we can consider an elementary or com-
plex event X being linked to another elementary or complex (independent) event
Y by standard connectivity cues as causality, goal, coordination, alternative etc.
relationships. In NKRL, the �rst relational mechanism is called �completive con-
struction� and the second �binding occurrences�. Detailed explications about the
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two mechanisms can be found, e.g., in [34,35], where the NKRL representations
of complex narratives are also supplied.

3 The NKRL querying/inferencing system

The techniques used for exploiting a knowledge base (KB) of elementary/complex
events represented in NKRL format range from direct questioning using speci�c
data structures called �search patterns� to high-level inference procedures, e.g.,
�transformations� and �hypotheses�. These last utilize advanced reasoning pro-
cesses grounded, e.g., on analogical reasoning (transformation rules) and causal-
like explication (hypothesis rules) techniques.

3.1 �Search patterns� and the �ltering uni�cation module

The basic building block for all the NKRL querying and inference procedures
is represented by Fum, the �Filtering Uni�cation Module� [32, 187-194]. Fum
takes as input speci�c NKRL data structures called �search patterns�, pi; search
patterns' task consists in specifying the syntactic format of the information to be
searched for within an NKRL knowledge base. Search patterns are used according
to two di�erent modalities:

• A search pattern pi can be created by the user through a suitable query
interface. In this case, it must be interpreted as a standard formal query,
to be used according to the usual querying modalities of an (advanced)
information retrieval system.
• Search patterns pi with the same formal characteristics of the �manual� pat-
terns can also be generated automatically by the di�erent versions of the
NKRL InferenceEngine when a particular step of a high-level inference pro-
cedure must be executed, see the next sub-sections. More exactly, the vali-
dation of this step will be performed by InferenceEngine by automatically
transforming the step into a �standard� pi.

Formally, search patterns pi correspond to specialized/partially instantiated
templates where all their �explicit variables� � identi�ed by conceptual labels in
the vari style, see Table 1 above � have been replaced by concepts/individuals
compatible with the original constraints imposed on these variables. The HClass
concepts included in this way in the pi play now the role of �implicit variables�.
This means that, when the comparison between pi and the predicative occur-
rences cj of the KB takes place, the concepts of the pi can match not only the
identical cj concepts, if any, but also the instances (individuals) of these last
concepts and all their speci�c terms with the corresponding instances. More de-
tails about search patterns, including the detailed speci�cations of the matching
operations with the occurrences of the KB can be found, e.g., in [32, 183-201].

3.2 General properties of the NKRL inference rules

These rules are quali�ed by the following general properties.
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• All the NKRL high-level inference rules, e.g., transformations and hypothe-
ses, can be described as:

X ? Y1 and Y2 . . . and Yn (2)

• In Eq (2), the head X corresponds either to a predicative occurrence cj (for-
mal representation of an elementary event) in a hypothesis context or to a
search pattern pi (formal representation of a generic query) in a transforma-
tion context. The logical connective star operator, �?�, must be interpreted as
a �biconditional � (↔) in a hypothesis context and as a �material implication�
(→) in a transformation context, see below for details.

• The n-ary atoms Y 1 . . . Yn correspond to partially instantiated templates;
these atoms represent the translation into NKRL terms of the �reasoning
steps� that make up the rule. At the di�erence, however, of the partially
instantiated templates used for the search patterns pi, they include now
explicit variables of the form vari. We can note that each Y 1 . . . Yn atom is
created independently according to the (rich) n-ary format of Eq (1). With
respect then to the expressiveness problems, the NKRL high-level inference
rules are now free from any of the binary limitations mentioned in Section
1, see also the concrete examples thereafter.

• Given the presence of co-reference constraints that link together the di�erent
Yi atoms and are represented, among other things, by the names of the ex-
plicit variables, the Eq (2) rules must be executed by a full InferenceEngine.
According to the procedural interpretation normally utilized in a logic pro-
gramming context [17, 112-121], the di�erent versions of the InferenceEngine
understand each rule as a procedure. This allows us to reduce �problems� of
the form X to a succession of �sub-problems� of the form Y 1 and . . .Yn.

• In an NKRL rule context, each Yi is interpreted in turn as a procedure call
that tries to convert Yi into (at least) a successful search pattern pi, able then
to match one or several predicative occurrences cj of the KB. Backtracking
techniques (see below) will be used, in case, during this conversion process.

• The success of the matching operations pi/cj for a pi pattern derived from
Yi means that the reasoning step represented by Yi has been validated.
InferenceEngine continues then its work trying to validate the reasoning
step corresponding to sub-problem Yi+1. In line with the presence of the
operator �and� in Eq (2), the logical expression represented by Eq (2) is
fully validated i� all the reasoning steps Y1, Y2 . . . Yn are validated.

An in-depth description of the di�erent versions of InferenceEngine is be-
yond the possibilities of the present paper, see [31,32, 201-234] in this context.
We will only note that, from an algorithmic point of view, all these versions work
according to a backward chaining approach with chronological backtracking. The
di�erences with respect to other applications of this approach (see, e.g., PRO-
LOG) are mainly linked with the unusual complexity and expressiveness proper
to the n-ary NKRL data structures.

For example, after a deadlock due to the failure of a pi/cj matching actions
when trying to validate a reasoning step corresponding to Yi, InferenceEngine
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must carry out some complex restoring procedures of the program environment
in order to return to the previous choice point. In this context, four main �envi-
ronment variables� are used:

• VALAFF holds the values provisionally a�ected to the vari included in the
n-ary atoms Y 1 . . . Yn that implement the reasoning steps of the inference
rules. These values can be deleted, in case, after a backtracking operation.

• DESVAR holds the �nal values associated with the variables vari when the
successful processing of one of the reasoning steps has been de�nitively com-
pleted.

• RESTRICT holds the constraints (HClass terms) associated with the vari-
ables vari of the di�erent atoms/reasoning steps: these will be used to build
up all the di�erent search patterns that can be derived from these schemata,
see below.

• OCCUR holds the list of the symbolic names of all the cj predicative occur-
rences involved in the pi/cj matching operations. The values bound to vari
that have been retrieved in these occurrences are then used to build up the
VALAFF lists.

Let us suppose that, during the processing of a high-level inference rule,
we are trying to validate the reasoning step (n-ary atom) Yi reproduced in
Table 2 � without worrying whether Yi is now part of a �transformation� or
�hypothesis� or any other type of rule. As already stated, the validation succeeds
i� (at least) a pi derived from Yi can successfully match, using Fum, (at least) a
predicative occurrence cj stored in the KB. For the sake of simplicity, we suppose
here that InferenceEngine has already successfully performed the �pre-selection�
operations aimed at building up a subset of the NKRL KB including only the
occurrences surely compatible with the Yi to validate � e.g., those having the
same semantic predicate [32, 194-201].

Under these conditions, we can assume that one of the occurrences of this sub-
set is conc2.c34 of Table 2; conc2.c34 is then stored within OCCUR. Note, in this
occurrence, the recursive utilization of the SPECIF(ication) operator to build up
�structured arguments� ak of the predicate, see Eq (1), under the form of lists of
properties/attributes that characterize the �rst element of each SPECIF list [32,
68-70]. The di�erent search patterns needed for the pi/cj matching operations
corresponding to this occurrence are now derived by systematically substituting
to the variables var1 and var2 included in the Yi we are trying to validate, see
Table 2, their associated constraints (suitably stored within RESTRICT). We
recall here, see sub-section 2.1 above, that the search patterns pi only admit
implicit variables.

Variable var1 can be substituted only by the constraint company_; in con-
trast, two substitutions, var2 = human_being and var2 = company_ are pos-
sible for var2. A �rst search pattern will be then built up by substituting com-
pany_ for var1 in Yi and, according to the chronological approach, the �rst var2
constraint, i.e., human_being, for var2 (company_ and human_being are also
provisionally associated, respectively, with var1 and var2 in VALAFF). Fum
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will then try to execute a match with conc2.c34 using a search pattern corre-
sponding to a payment to a company done by an individual person (SOURCE
human_being) instead of a company (SCHERING_, see conc2.c34). This match
obviously fails. The engine then backtracks making use of a particular module,
called Reexec, which is the same in all the versions of InferenceEngine. Reexec is
systematically used to:

• carry out the backtracking operations when a deadlock occurs, and
• reconstruct, making use of the environment variables, the data structures
(the environment) proper to the previous choice point.

The association var2 = human_being is then removed from VALAFF and,
using the constraints stored in RESTRICT, the engine builds up a new pattern
from Yi using now the values var1 = var2 = company_. This time, Fum will
succeed in unifying the new pattern with conc2.c34. SCHERING_ is, in fact,
stored in HClass as an instance of pharmaceutical_company: this last is, obvi-
ously, a company_. The two values var1 = PHARMACOPEIA_ and var2 =
SCHERING_ will then be stored in DESVAR for use in the Yi+1 etc. inference
steps of the rule.

Table 2. Backtracking and automatic construction of a search pattern.
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The NKRL inference procedures concern mainly two classes of rules, �trans-
formations� and �hypotheses�; see, e.g., [32, 234-239] for other types of rules, in
particular, the ��ltering rules�.

3.3 Transformation rules

Transformation rules try to adapt, from a semantic point of view, a well-formed
search pattern pi that failed (that was unable to �nd a match within the KB)
to the real contents of this base making use of a sort of analogical reasoning.
Hence, in a transformation context, the head X of Eq (2) is now expressed in
search pattern format: the aim of this type of rules is to automatically transform
a given pi into one or more di�erent p1, p2 . . . pn that are not �syntactically
equivalent� but only �semantically close� to the original one. Transformation
rules can be interpreted according to a production rules paradigm: if a search
pattern pi exists (i.e., it has been previously created, manually or automatically,
by an InferenceEngine) then a suitable transformation rule can substitute p1,
p2 . . . pn for the original pi. The generic �?� connective of Eq (2) can therefore
be changed into the material implication symbol, �→�.

For an example of transformation, let us suppose we ask: �Search for the
evidence of the existence of a serious alarm situation in an industrial oil/gas
premises�, see also [33]. If it is impossible to obtain a direct answer, and if the
appropriate transformation rule exists, the original, manually created pi search
pattern can be automatically changed by the transformation version of Infer-
enceEngine into two new, logically linked patterns: p1) �search for information
reporting that the working sta� is moving massively to a new location�; p2)
�search for information con�rming that the new location is outside the original
gas/oil premises�. If the two new patterns are both able to unify some congruent
information in the KB, we can consider that this information is a sort of indirect,
useful answer to the query originally posited.

For the sake of clarity, and in compliance with the usual production rules
practices, it can be useful to denote the transformation rules as made up of a
left-hand side, the �antecedent� and one or more right-hand side(s), the �con-
sequent(s)�. The antecedent is then the general formulation, in search pattern
format, of the formal query to be transformed, and the consequent(s) is/are the
NKRL representation(s) of one or more search patterns to be substituted for the
transformed one. Denoting with A the antecedent and with Csi all the possible
consequents, for transformation rules Eq (2) can be expressed as:

A(vari)→ Csi vari ⊆ varj (3)

The restriction vari ⊆ varj � all the variables declared in the antecedent
A must also appear in the Csi accompanied, in case, by additional variables �
corresponds to the usual safety condition that assures the logical congruence
of the rules. The �transformation arrow� of Eq (3), �→�, can be interpreted
according to a double reading:

• Operationally speaking, the arrow indicates the direction of the transforma-
tion. The original search pattern (a specialization of the left-hand side A
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of the transformation rule) is then removed and replaced by one or several
new patterns obtained through the updating, using the parameters of the
original pattern, of the right-hand side Csi.

• From a semantic point of view, we assume that between the information re-
trieved through Csi and the information we wanted to obtain via the original
pi there is a sort of implication relationship � that, normally, denotes solely
a possible (a weak) implication.

An NKRL representation of the above �working sta� moving� transformation
is reproduced in Table 3.

Table 3. An example of transformation rule.

The antecedent of this rule corresponds to a specialization of the Ex-
ist:SituationBePresent template; it must be matched to the original search
pattern that failed. The Exist: templates [32, 155-159] are necessarily charac-
terized by the presence of a � location of the SUBJ(ect)�, represented in Ta-
ble 3 by the variable var1. In NKRL, determiners/attributes of the �location�
type are associated through the �colon� operator, �:�, with the arguments of
the predicate (i.e., the �llers) introduced by the SUBJ, OBJ, SOURCE and
BENF functional roles of a template or predicative occurrence [32, 75-76]. Ac-
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cording to the associated constraint, var1 can be instantiated by specializa-
tions or instances pertaining to the oil/gas_processing_plant sub-hierarchy
of HClass. The �rst consequent schema (conseq1 ) is a specialization of the
Move:AutonomousPhysicalPersonDisplacement template, used to characterize
the autonomous movement of a person or social body. A characteristic of this
template is that the person or social body, as a SUBJ(ect), is seen as moving
herself/himself/itself as an OBJ(ect), see the constraint that forces the equal-
ity between the values bound to the var2 and var3 variables. The �location
of the SUBJ(ect)� corresponds then to the starting point l1, the �location of
the OBJ(ect)� to the arrival point l2. The second consequent schema (conseq2 )
is a specialization of the Own:CompoundProperty template. It is used to �nd,
among the predicative occurrences cj of the KB, elementary events signaling
that location l2 is really outside the endangered plant (l1). In this consequent
schema, the identi�cation of the property_ (the �ller of the TOPIC role) is
represented by a SPECIF(ication) list where the �rst argument (var5 ) must be
a specialization of concepts like part/whole_relationship, relational_property
and spatio/temporal_relationship. outside_ is, accordingly, a speci�c term of
spatio/temporal_relationship.

3.4 Hypothesis rules

Hypothesis rules allow us to build up automatically a sort of causal explanation
for information (i.e., for a predicative occurrence cj) already retrieved making
use of a search pattern pi in a querying-answering mode. In a hypothesis context,
the head X of Eq (2) is then expressed in predicative occurrence format. We can
now interpret Eq (2) according to the following analysis: X (cj), an elementary
event, occurs i� other elementary events corresponding to the reasoning steps
Y 1 and Y2 . . . and Yn have actually taken place. Conversely, the occurrence
of X (cj) implies that some events corresponding to Y 1 and Y 2 . . . Yn really
happened. Hence, Eq (2) has the following format for the hypothesis rules:

X ↔ Y1 and Y2 . . . Yn (4)

where the �biconditional � operator, �↔�, has been substituted for the generic
�?�. As usual, the reasoning steps (n-ary atoms) Yi of Eq (4) � called �condition
schemata� in a hypothesis context � must all be satis�ed (for each of them, at
least one of the corresponding search patterns pi must �nd a successful uni�ca-
tion with the KB) in order that the set of c1, c2 . . . cn occurrences retrieved
in this way can be interpreted as a context/causal explanation of the original
occurrence cj corresponding to X in Eq (4).

Let us suppose, for example, we have directly retrieved, in a querying-answering
mode, information like: �The control room operators of a particular gas/oil sta-
tion (ALDS) have carried out a piping segment isolation procedure in the context
of an industrial accident�, see Table 4 and [33]; virt1.c66 is then the occurrence
cj to be explained.

A hypothesis rule whose �premise� can match cj , i.e., virt1.c66, is reproduced
in Table 5; the premise is the triggering pattern corresponding to the head X of
Eq (4).
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Table 4. Execution of an emergency procedure.

It is easy, in fact, to verify (using Fum) that occurrence virt1.c66 in Table 4 is
an instance of the search pattern pi obtained from the premise of the rule of Table
5. We can then try to build up, using this rule, a sort of �causal explanation�
of the triggering event (the isolation procedure) by retrieving information in
the style of: i) �someone has previously attempted to activate a (less drastic)
corrective maintenance procedure� (cond1 ); ii) �this corrective maintenance has
failed� (cond2 ) and iii) �the accident is considered as a serious one� (cond5 ).
We must also verify that the person at the origin of the �corrective maintenance
procedure� is a �eld operator (cond4 ) and that those who have implemented the
�piping segment isolation procedure� are control room operator/s (cond3 ).

Matching the premise of the rule of Table 5 with the occurrence of Table
4 allows us to associate the value INDIVIDUAL_PERSON_98 to var1 and
GAS_LEAKAGE_1 to var2, by verifying also the constraints associated with
var1 (human_being) and var2 (industrial_accident). These values are trans-
mitted to the condition schemata and used � along with those found, making
use of backtracking techniques when needed, for the residual variables � to build
up the corresponding search patterns pi. I� all the Yi have been satis�ed, we can
a�rm that a possible explication of the original event has been built up. Note
that, as normal in a hypothesis context, the explication proposed by the rule of
Table 5 corresponds to only one of all the possible hypotheses about the �causes�
of the original event: a particular hypothesis rule must always be conceived as a
member of a family of possible explications.

To conclude about the inference procedures, we can also note that an inter-
esting feature of the NKRL rule system concerns the possibility of making use
of �transformations� when working in a �hypothesis� context � i.e., of utilizing
these two modalities of inference in an integrated way. This means that, when-
ever a search pattern pj is derived from a condition schema Yi of a hypothesis to
implement a step of the reasoning process, we can use this pattern as it has been
automatically built up by InferenceEngine from its father condition schema, but
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Table 5. An example of hypothesis rule.

also in a transformed form if the appropriate transformation rules exist. In this
way, a hypothesis that was deemed to fail because of the impossibility of deriv-
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ing a successful pj from one of its condition schemata can continue if a new pj ,
obtained by transformation, will �nd a successful uni�cation within the base [32,
216-231] and [31].

4 Some comparisons

What expounded in the previous Section could be summarized by suggesting
that the use of a rich n-ary approach in the NKRL style could be very im-
portant for creating highly expressive inference rules. In these, the �atoms� can
represent directly complex situations and events, actions (e.g., in a robotics con-
text), scenarios, narratives etc. without being limited to the use of (inexpressive)
binary clauses.

The advantages linked to the setup of knowledge representation languages
utilising rule systems that are not systematically restrained to make use of �bi-
nary atoms� are known for a long time. We can mention in this context the
development of those languages that can be denoted (broadly speaking) as frame-
based languages, see the well-known Minsky's paper [15]. They make use of an
n-ary form of knowledge representation consisting of a collection (a �frame�)
of slot/value pairs that are semantically related (i.e., the collection can be un-
derstood as a single unit) given that they all refer to the same symbolic name
identifying the frame. This representation schema can be likened to a simpli�ed
form of Eq (1), where the conceptual predicate Pj has been combined with the
symbolic label Li to give rise to the generic �name� of the frame, like Ei�el-
Tower, Event234, Want-01, Human-97 etc. The NKRL functional roles Rk are
now reduced, in practice, to generic properties/attributes slots, even if in some
frame systems used in a speci�c Computational Linguistics context they are still
equated to �roles� and identi�ed by purely numerical labels like Arg0, Arg1,
Arg2. . . , see [2] for example. Important knowledge representation and reason-
ing systems that can be equated to frame systems are [12,18,21]. Several n-ary,
frame-based programming languages have also been developed after the publica-
tion of the Minsky's paper; we will only mention here the (probably) best-known
one, F-Logic [10]. This language, originally developed in a deductive databases
framework, combines the declarative semantics of the deductive database lan-
guages with the data modelling capabilities of the frame/object-oriented data
models.

To �nd, then, valid analogies between NKRL and comparable tools, it is
necessary to look at that class of pure AI-based n-ary systems that agree on
the paramount importance of a precise de�nition of the �function� (role) played
by the di�erent entities involved in events, actions, scenarios, narratives etc. for
a complete understanding of the situation under consideration � see [36] for a
complete analysis of this topic. This independently, by the way, from all the
possible existing di�erences with respect to the actual list of �roles� and their
detailed descriptions. Among the �rst concrete realizations of the notion of �role�
according to an Eq (1) meaning, we can recall Silvio Ceccato's �correlators� that
he used, in the context of some experiments of Mechanical Translation (MT) in
the �fties-sixties, to represent general kinds of narratives as recursive networks of
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triadic structures [4]. Another n-ary, Eq (1) congruent, knowledge representation
model used to encode narrative-like structures that was very popular in the sev-
enties is the �Conceptual Dependency� theory of Roger Schank [23]. In this, the
underlying meaning (�conceptualization�) of a given narrative/scenario/complex
event was expressed as the association of semantic predicates chosen from a set
of twelve formal �primitive actions� (like INGEST, MOVE, ATRANS, abstract
relationship transfer, PTRANS, physical transfer, etc.) with seven role relation-
ships (�deep cases�) in the Case Grammar style [6]. The seven roles were Object
(in a state), Object (of a change of state), Object (of an action), Actor, Re-
cipient/Donor, From/To and Instrument. Unfortunately, Schank's theory was,
on the one hand, insu�ciently speci�ed and, on the other, unnecessarily com-
plicated because of the in�uence of psychological (introspective) considerations
according to a characteristic trend of AI in those years. Nevertheless, Schank's
work had a particularly strong in�uence on the development of formalized (and
at least partly computerized) systems for the representation and management of
storylines and connectivity phenomena making use of all sorts of scripts, scenar-
ios, TAUs (Thematic Abstraction Units), MOPs (Memory Organization Packets)
etc.

Conceptual Graphs (CGs) represent a recent [25,26] high-level n-ary mod-
elling paradigm based on a powerful graph-based representation scheme that
makes use of two kinds of nodes, �concepts� and �conceptual relations� (i.e.,
functional roles). For example, a CG corresponding to the narrative �John is go-
ing to Boston by bus� is represented by a conceptual structure where a �concept
node�, �Go� (having a function similar to that of an NKRL conceptual predi-
cate, but denoted by a natural language term) is associated with three �relation
nodes� like Ag(e)nt, Dest(ination) and Instr(ument). They introduce the three
arguments of the predicate, i.e., three new concept nodes representing, respec-
tively, the constant John (the �agent�) as an instance of the concept Person, the
constant Boston (the �destination�) as an instance of the concept City and the
concept Bus (the �instrument�). The resemblance to the NKRL representation of
elementary events is quite evident. Other similarities concern, e.g., the existence,
for any CGs system, of a hierarchy of concept-types comparable to HClass, the
use for the modelling of the contexts of second order (nested graphs) extensions
that bear some resemblance to NKRL's constructs like completive construction
and binding occurrences, the analogies about the structure of some inference
techniques, etc. However, essential di�erences also exist. They concern, in par-
ticular, the choice of leaving completely free in CGs, for the sake of generality,
the selection of those �predicates� that, in CGs as in NKRL, represents the focal
element of the representation of an elementary event. In the CGs encoding of
the �John is going to Boston. . . � event, the predicate is then simply represented
by the generic surface element �Go� � it would be a primitive like MOVE in
NKRL. As a consequence, it becomes extremely di�cult to create an exhaustive
and authoritative list of CGs �canonical graphs�, equivalent to NKRL's �tem-
plates�, for evident reasons of combinatorial explosion. A tool like HTemp is,
then, practically inconceivable in a CGs context.
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We can conclude this �comparisons� Section by some remarks about the onto-
logical systems currently used in a �cognitive robotics� domain. The IEEE Stan-
dard Ontology for Robotics and Automation (R&A) [24] includes a Core Ontol-
ogy for R&A (CORA) and three additional specialized hierarchies. CORA [22]
has been developed to provide unambiguous de�nitions of core notions of robotics
and related topics, such as robot-robot and robot-human communication, robot
design, and integration of data about robots. It is based on SUMO, the Sug-
gested Upper Merged Ontology [4], a large top-level ontology of general con-
cepts that �merges� several previous ontological works and aims at de�ning the
main ontological categories describing the world. SUMO has been written in
SUO-KIF language, a �rst-order language that can be assimilated to the frame-
based programming languages mentioned above. An extension of NKRL to take
into account, in particular, spatial reasoning in a speci�c robotics/AAL domain
is [1]. The majority of the ontology-based applications in the �cognitive robotics�
domain are now, however, OWL-based. KnowRob, KNOWledge processing for
ROBots [28], is a well-known system that introduces a common vocabulary for
representing knowledge about robot actions, events, objects, environments, and
the robot's hardware as well as inference procedures able to operate on this com-
mon representation. The de�nition of this common vocabulary is mainly based on
the root concepts of the OpenCyc upper ontology, an open source subset rewrit-
ten in OWL of the original frame-based Cyc ontology [14]. OpenCyc/OWL has
also been used for implementing ORO, the OpenRobots Ontology system [11].
ORO is an event-oriented platform for symbolic knowledge storage and reasoning
that focuses on modelling robot perceptions and that has been used in several
human-robot interaction and dialogue scenarios. A recent, interesting work that
extends KnowRob is described in [3]. Dealing with events, actions and situations,
this work has some contact points with NKRL � even if, at the di�erence of this
last language, is strictly limited to deal with a pure �physical world �. It concerns,
in fact, how to represent the �episodic memories� of speci�c agents that perform
manipulation tasks, and deals then with perceived objects, performed physical
actions, their duration and possible failures. Actions � like, e.g., arm movements
� are decomposed in motion phases with di�erent subgoals. The �nal aim of the
work is to show how those memories can be used to improve the robot's action
models by getting insights about their manipulation activities.

5 Conclusion

After having recalled some general characteristics of NKRL (like the addition
of an �ontology of events� to the usual �ontology of objects, or the possibility of
dealing in an e�cient way with some sorts of contextual information), we have
then focused the discussion on the speci�c rules and inferential aspects proper to
this language. We have then introduced the general, formal model of �rule� used
in an NKRL context and we have shown how this can be appropriately adapted
to the setup of advanced types of inference operations based, e.g., on analogical
and causal types of reasoning.

In particular, we have emphasized how the use of the advanced n-ary features
of NKRL in a rule/inference context has a very important consequence: we are
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no more constrained to express the atoms of these rules in terms of binary
clauses using just monadic (unary) and dyadic (binary) predicates (as usually
carried out in an Arti�cial Intelligence context), and these atoms can directly
represent, now, complex and meaningful situations. Note that modelling the
rule atoms according to a simple binary format implies, among other things, the
impossibility of stating even relatively simple implications of the �if-then� type
making use of a reduced number of clauses. This leads in practice to the necessity
of the (systematic) decomposition of the original formulation of the rules into
(possibly very large) amounts of simple binary clauses, implying serious problems
both from a logical (and operational) point of view. It is evident, in fact, that
techniques of this type are relatively simple to use when the rules to be built
up are quite simple, but they can be out of place in more realistic, complex
and dynamic situations like those typically dealt with in an NKRL context (see
the Section 3 examples). In these cases in fact, very often, the decomposition
techniques would be unable to deal with the speci�c situations using a limited
number of binary clauses.
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